Abstract

A measurement system for quantitative determination of both surface and bulk contributions to the photo-thermal absorption in DUV optics was developed. It is based upon a Hartmann-Shack wavefront sensor with a sensitivity of ~λ/10000 rms, accomplishing precise on-line monitoring of wavefront deformations of a collimated test laser beam transmitted perpendicular through the excimer laser-irradiated site of a cuboid sample. Caused by the temperature dependence of the refractive index as well as thermal expansion, the initially plane wavefront of the test laser is distorted into a cylindrical shape, with bending ends towards the surface. Sign and magnitude depend on index change and expansion. By comparison with thermal theory, this transient wavefront distortion yields a quantitative absolute measure of bulk and surface absorption losses in the sample. First rresults for fused silica are presented.

©2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. M. Schermerhorn, D. R. Fladd, and W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” Proc. SPIE 2428, 458–468 (1994).
  2. W. Primak and R. Kampwirth, “The Radiation Compaction of Vitreous Silica,” J. Appl. Phys. 39(12), 5651–5658 (1968).
  3. C. Van Peski, “Behavior of Fused Silica under 193nm Irradiation,” Technology Transfer # 00073974A-TR, International SEMATECH (2000)
  4. E. Eva and K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys., A Mater. Sci. Process. 62(2), 143–149 (1996).
  5. M. Guntau and W. Triebel, “Novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71(6), 2279–2282 (2000).
  6. C. Görling, U. Leinhos, and K. Mann, “Comparative studies of absorptance behaviour of alkaline-earth fluorides at 193 nm and 157nm,” Appl. Phys. B 74(3), 259–265 (2002).
  7. B. Schäfer, J. Gloger, U. Leinhos, and K. Mann, “Photo-thermal measurement of absorptance losses, temperature induced wavefront deformation and compaction in DUV-optics,” Opt. Express 17(25), 23025–23036 (2009).
  8. D. R. Neal, W. J. Alford, J. K. Gruetzner, and M. E. Warren, “Amplitude and phase beam characterization using a two-dimensional wavefront sensor,” Proc. SPIE 2870, 72 (1996).
  9. B. Schäfer and K. Mann, “Determination of beam parameters and coherence properties of laser radiation by use of an extended Hartmann-Shack wave-front sensor,” Appl. Opt. 41(15), 2809–2817 (2002).
    [PubMed]

2009 (1)

2002 (2)

B. Schäfer and K. Mann, “Determination of beam parameters and coherence properties of laser radiation by use of an extended Hartmann-Shack wave-front sensor,” Appl. Opt. 41(15), 2809–2817 (2002).
[PubMed]

C. Görling, U. Leinhos, and K. Mann, “Comparative studies of absorptance behaviour of alkaline-earth fluorides at 193 nm and 157nm,” Appl. Phys. B 74(3), 259–265 (2002).

2000 (1)

M. Guntau and W. Triebel, “Novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71(6), 2279–2282 (2000).

1996 (2)

E. Eva and K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys., A Mater. Sci. Process. 62(2), 143–149 (1996).

D. R. Neal, W. J. Alford, J. K. Gruetzner, and M. E. Warren, “Amplitude and phase beam characterization using a two-dimensional wavefront sensor,” Proc. SPIE 2870, 72 (1996).

1994 (1)

R. E. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. M. Schermerhorn, D. R. Fladd, and W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” Proc. SPIE 2428, 458–468 (1994).

1968 (1)

W. Primak and R. Kampwirth, “The Radiation Compaction of Vitreous Silica,” J. Appl. Phys. 39(12), 5651–5658 (1968).

Alford, W. J.

D. R. Neal, W. J. Alford, J. K. Gruetzner, and M. E. Warren, “Amplitude and phase beam characterization using a two-dimensional wavefront sensor,” Proc. SPIE 2870, 72 (1996).

Eichner, L.

R. E. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. M. Schermerhorn, D. R. Fladd, and W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” Proc. SPIE 2428, 458–468 (1994).

Eva, E.

E. Eva and K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys., A Mater. Sci. Process. 62(2), 143–149 (1996).

Fladd, D. R.

R. E. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. M. Schermerhorn, D. R. Fladd, and W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” Proc. SPIE 2428, 458–468 (1994).

Gloger, J.

Görling, C.

C. Görling, U. Leinhos, and K. Mann, “Comparative studies of absorptance behaviour of alkaline-earth fluorides at 193 nm and 157nm,” Appl. Phys. B 74(3), 259–265 (2002).

Gruetzner, J. K.

D. R. Neal, W. J. Alford, J. K. Gruetzner, and M. E. Warren, “Amplitude and phase beam characterization using a two-dimensional wavefront sensor,” Proc. SPIE 2870, 72 (1996).

Guntau, M.

M. Guntau and W. Triebel, “Novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71(6), 2279–2282 (2000).

Kampwirth, R.

W. Primak and R. Kampwirth, “The Radiation Compaction of Vitreous Silica,” J. Appl. Phys. 39(12), 5651–5658 (1968).

Leinhos, U.

B. Schäfer, J. Gloger, U. Leinhos, and K. Mann, “Photo-thermal measurement of absorptance losses, temperature induced wavefront deformation and compaction in DUV-optics,” Opt. Express 17(25), 23025–23036 (2009).

C. Görling, U. Leinhos, and K. Mann, “Comparative studies of absorptance behaviour of alkaline-earth fluorides at 193 nm and 157nm,” Appl. Phys. B 74(3), 259–265 (2002).

Mann, K.

B. Schäfer, J. Gloger, U. Leinhos, and K. Mann, “Photo-thermal measurement of absorptance losses, temperature induced wavefront deformation and compaction in DUV-optics,” Opt. Express 17(25), 23025–23036 (2009).

B. Schäfer and K. Mann, “Determination of beam parameters and coherence properties of laser radiation by use of an extended Hartmann-Shack wave-front sensor,” Appl. Opt. 41(15), 2809–2817 (2002).
[PubMed]

C. Görling, U. Leinhos, and K. Mann, “Comparative studies of absorptance behaviour of alkaline-earth fluorides at 193 nm and 157nm,” Appl. Phys. B 74(3), 259–265 (2002).

E. Eva and K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys., A Mater. Sci. Process. 62(2), 143–149 (1996).

Neal, D. R.

D. R. Neal, W. J. Alford, J. K. Gruetzner, and M. E. Warren, “Amplitude and phase beam characterization using a two-dimensional wavefront sensor,” Proc. SPIE 2870, 72 (1996).

Oldham, W. G.

R. E. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. M. Schermerhorn, D. R. Fladd, and W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” Proc. SPIE 2428, 458–468 (1994).

Primak, W.

W. Primak and R. Kampwirth, “The Radiation Compaction of Vitreous Silica,” J. Appl. Phys. 39(12), 5651–5658 (1968).

Schäfer, B.

Schenker, R. E.

R. E. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. M. Schermerhorn, D. R. Fladd, and W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” Proc. SPIE 2428, 458–468 (1994).

Schermerhorn, P. M.

R. E. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. M. Schermerhorn, D. R. Fladd, and W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” Proc. SPIE 2428, 458–468 (1994).

Triebel, W.

M. Guntau and W. Triebel, “Novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71(6), 2279–2282 (2000).

Vaidya, H.

R. E. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. M. Schermerhorn, D. R. Fladd, and W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” Proc. SPIE 2428, 458–468 (1994).

Vaidya, S.

R. E. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. M. Schermerhorn, D. R. Fladd, and W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” Proc. SPIE 2428, 458–468 (1994).

Warren, M. E.

D. R. Neal, W. J. Alford, J. K. Gruetzner, and M. E. Warren, “Amplitude and phase beam characterization using a two-dimensional wavefront sensor,” Proc. SPIE 2870, 72 (1996).

Appl. Opt. (1)

Appl. Phys. B (1)

C. Görling, U. Leinhos, and K. Mann, “Comparative studies of absorptance behaviour of alkaline-earth fluorides at 193 nm and 157nm,” Appl. Phys. B 74(3), 259–265 (2002).

Appl. Phys., A Mater. Sci. Process. (1)

E. Eva and K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys., A Mater. Sci. Process. 62(2), 143–149 (1996).

J. Appl. Phys. (1)

W. Primak and R. Kampwirth, “The Radiation Compaction of Vitreous Silica,” J. Appl. Phys. 39(12), 5651–5658 (1968).

Opt. Express (1)

Proc. SPIE (2)

D. R. Neal, W. J. Alford, J. K. Gruetzner, and M. E. Warren, “Amplitude and phase beam characterization using a two-dimensional wavefront sensor,” Proc. SPIE 2870, 72 (1996).

R. E. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. M. Schermerhorn, D. R. Fladd, and W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” Proc. SPIE 2428, 458–468 (1994).

Rev. Sci. Instrum. (1)

M. Guntau and W. Triebel, “Novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71(6), 2279–2282 (2000).

Other (1)

C. Van Peski, “Behavior of Fused Silica under 193nm Irradiation,” Technology Transfer # 00073974A-TR, International SEMATECH (2000)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Geometry and notations characterizing an orthorhombic optical element during laser irradiation.
Fig. 2
Fig. 2 Setup for measurement of the laser-induced photo-thermal wavefront deformation.
Fig. 3
Fig. 3 Normalized stationary form functions V’ (left) and S’ (right), corresponding to pure bulk and pure surface absorption of fused silica (sample dimension 25x25x45mm3, top hat beam of 3mm diameter, heat transfer coefficient κ = 10). The isolines represent equidistant values between [0, 1].
Fig. 4
Fig. 4 Laser induced photo-thermal wavefront deformation for two 25x25x45 mm3 quartz samples S1 (left) and S2 (right) with different absorption (cf text).
Fig. 5
Fig. 5 Time averaged normalized optical path length δw/P (x = 0, z) for two different fused silica samples irradiated with 8.3 W/cm2. The solid lines represent the least square approximation for κ = 2.5 W/m2K with bulk, surface and tilt form functions (parameters according to Table 1).

Tables (1)

Tables Icon

Table 1 Bulk absorption k factors (k = μ·lg e), surface absorption β, and tilt a as well as coefficient of determination R2 according to Eq. (5) for two samples of fused silica and two different heat transfer coefficients κ used in the numerical calibration. The two lower rows show the result for fixed tilt parameter a = 0

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

c p ρ t δ T ( r , t ) + ( λ δ T ( r , t ) ) + μ I P ( r , t ) = 0             r G n ( λ δ T ( r , t ) + κ δ T ( r , t ) n β I p ( r , t ) e z ) = 0               r G .
δ T ( x , y , z , t ) = μ l s , β < < 1 P [ μ V ( x , y , z , t ) + β S ( x , y , z , t ) ] ,
δ w ( x , z , t ) = 0 d s ( n 0 1 ) u y y ( x , y , z , t ) + n T δ T ( x , y , z , t ) d y ~ l i n e a r i t y P [ μ V ' ( x , z , t ) + β S ' ( x , z , t ) ] ,
w ( x , z ) = l = 0 M c l P l ( x , z ) ,
( β μ a ) T = A + 1 P ( δ w [ τ ] ( z 1 ) ... δ w [ τ ] ( z N ) ) T
A = ( S ' [ τ ] ( z 1 ) V ' [ τ ] ( z 1 ) T ( z 1 ) : : : S ' [ τ ] ( z N ) V ' [ τ ] ( z N ) T ( z N ) ) .

Metrics