Abstract

We develop a novel phasor monitor to obtain the constellation diagram from asynchronously sampled data measured by using the delay-detection technique. This phasor monitor consists of three parts; a phase-adjustment-free delay-interferometer, an optical front-end made of three photodetectors, and analog-to-digital (A/D) convertors, and a digital signal processor. We operate the A/D convertor at the sampling rate much slower than the symbol rate and acquire the data asynchronously. However, despite the use of such a slow and asynchronous sampling rate, we obtain the clear eye and constellation diagrams by utilizing the software-based synchronization technique based on a novel phased-reference detection algorithm. Thus, the proposed phasor monitor can be implemented without using high-speed A/D convertors and buffer memories, which have been the major obstacles for the cost-effective realization of the phasor monitor. For a demonstration, we realize the proposed phasor monitor by using an A/D converter operating at 9.77 MS/s and used it for the constellation monitoring and bit-error-rate (BER) estimation of 10.7-Gsymbol/s differential quadrature phase-shift keying (DQPSK) and differential 8-ary phase-shift keying (D8PSK) signals.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical performance monitoring technique using software-based synchronous amplitude histograms

H. G. Choi, J. H. Chang, Hoon Kim, and Y. C. Chung
Opt. Express 22(20) 24024-24033 (2014)

Transmission of 108-Gb/s PDM 16ADPSK signal on 25-GHz grid using non-coherent receivers

Y. Takushima, H. Y. Choi, and Y. C. Chung
Opt. Express 17(16) 13458-13466 (2009)

References

  • View by:
  • |
  • |
  • |

  1. K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 563–570 (2006).
    [Crossref]
  2. D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightwave Technol. 24(1), 12–21 (2006).
    [Crossref]
  3. C. Dorrer, C. R. Doerr, I. Kang, R. Ryf, J. Leuthold, and P. J. Winzer, “Measurement of eye diagrams and constellation diagrams of optical sources using linear optics and waveguide technology,” J. Lightwave Technol. 23(1), 178–186 (2005).
    [Crossref]
  4. N. Kikuchi, K. Mandai, K. Sekine, and S. Sasaki, “Incoherent 32-level optical multilevel signaling technologies,” J. Lightwave Technol. 26(1), 150–157 (2008).
    [Crossref]
  5. X. Liu, S. Chandrasekhar, and A. Leven, “Digital self-coherent detection,” Opt. Express 16(2), 792–803 (2008).
    [Crossref] [PubMed]
  6. K. Tanimura, and H. Ohta, “Monitoring of DPSK/DQPSK signals using 1-bit delayed self-homodyne detection with optical phase diversity,” in Proceedings of European Conference on Optical Communications 2007, Paper P065, 2007.
  7. Y. Takushima, H. Y. Choi, and Y. C. Chung, “Measurement of differential phasor diagram of multilevel DPSK signals by using an adjustment-free delay interferometer composed of a 3 x 3 optical coupler,” J. Lightwave Technol. 27(6), 718–730 (2009).
    [Crossref]
  8. Y. Takushima, H. Y. Choi, H. Kim, and Y. C. Chung, “Quality monitoring of DxPSK signals by using differential phasor diagram,” IEEE Photon. Technol. Lett. 21(18), 1305–1307 (2009).
    [Crossref]
  9. H. G. Choi, Y. Takushima, and Y. C. Chung, “Phasor monitoring of DxPSK signals using software-based synchronization technique,” in Proceedings of Optical Fiber Communications Conference 2010, paper OThE6.
  10. M. Westlund, H. Sunnreud, M. Karlsson, and P. A. Andrekson, “Software-synchronized all-optical sampling for fiber communication systems,” J. Lightwave Technol. 23(3), 1088–1099 (2005).
    [Crossref]
  11. A. Otani, Y. Tsuda, K. Igawa, and K. Shida, “Novel optical sampling oscilloscope using envelope detection triggering method,” J. Lightwave Technol. 26(17), 2991–2998 (2008).
    [Crossref]
  12. A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
    [Crossref]
  13. X. Wei, X. Liu, and C. Xu, “Numerical simulation of the SPM penalty in a 10-Gb/s RZ-DPSK system,” IEEE Photon. Technol. Lett. 15(11), 1636–1638 (2003).
    [Crossref]
  14. Y. Han and G. Li, “Theoretical sensitivity of direct-detection multilevel modulation formats for high spectral efficiency optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 571–580 (2006).
    [Crossref]

2009 (2)

Y. Takushima, H. Y. Choi, and Y. C. Chung, “Measurement of differential phasor diagram of multilevel DPSK signals by using an adjustment-free delay interferometer composed of a 3 x 3 optical coupler,” J. Lightwave Technol. 27(6), 718–730 (2009).
[Crossref]

Y. Takushima, H. Y. Choi, H. Kim, and Y. C. Chung, “Quality monitoring of DxPSK signals by using differential phasor diagram,” IEEE Photon. Technol. Lett. 21(18), 1305–1307 (2009).
[Crossref]

2008 (3)

2006 (3)

K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 563–570 (2006).
[Crossref]

D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightwave Technol. 24(1), 12–21 (2006).
[Crossref]

Y. Han and G. Li, “Theoretical sensitivity of direct-detection multilevel modulation formats for high spectral efficiency optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 571–580 (2006).
[Crossref]

2005 (2)

2003 (1)

X. Wei, X. Liu, and C. Xu, “Numerical simulation of the SPM penalty in a 10-Gb/s RZ-DPSK system,” IEEE Photon. Technol. Lett. 15(11), 1636–1638 (2003).
[Crossref]

1983 (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Andrekson, P. A.

Chandrasekhar, S.

Choi, H. Y.

Y. Takushima, H. Y. Choi, H. Kim, and Y. C. Chung, “Quality monitoring of DxPSK signals by using differential phasor diagram,” IEEE Photon. Technol. Lett. 21(18), 1305–1307 (2009).
[Crossref]

Y. Takushima, H. Y. Choi, and Y. C. Chung, “Measurement of differential phasor diagram of multilevel DPSK signals by using an adjustment-free delay interferometer composed of a 3 x 3 optical coupler,” J. Lightwave Technol. 27(6), 718–730 (2009).
[Crossref]

Chung, Y. C.

Y. Takushima, H. Y. Choi, and Y. C. Chung, “Measurement of differential phasor diagram of multilevel DPSK signals by using an adjustment-free delay interferometer composed of a 3 x 3 optical coupler,” J. Lightwave Technol. 27(6), 718–730 (2009).
[Crossref]

Y. Takushima, H. Y. Choi, H. Kim, and Y. C. Chung, “Quality monitoring of DxPSK signals by using differential phasor diagram,” IEEE Photon. Technol. Lett. 21(18), 1305–1307 (2009).
[Crossref]

Doerr, C. R.

Dorrer, C.

Han, Y.

Y. Han and G. Li, “Theoretical sensitivity of direct-detection multilevel modulation formats for high spectral efficiency optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 571–580 (2006).
[Crossref]

Igawa, K.

Kang, I.

Karlsson, M.

Katoh, K.

Kikuchi, K.

D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightwave Technol. 24(1), 12–21 (2006).
[Crossref]

K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 563–570 (2006).
[Crossref]

Kikuchi, N.

Kim, H.

Y. Takushima, H. Y. Choi, H. Kim, and Y. C. Chung, “Quality monitoring of DxPSK signals by using differential phasor diagram,” IEEE Photon. Technol. Lett. 21(18), 1305–1307 (2009).
[Crossref]

Leuthold, J.

Leven, A.

Li, G.

Y. Han and G. Li, “Theoretical sensitivity of direct-detection multilevel modulation formats for high spectral efficiency optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 571–580 (2006).
[Crossref]

Liu, X.

X. Liu, S. Chandrasekhar, and A. Leven, “Digital self-coherent detection,” Opt. Express 16(2), 792–803 (2008).
[Crossref] [PubMed]

X. Wei, X. Liu, and C. Xu, “Numerical simulation of the SPM penalty in a 10-Gb/s RZ-DPSK system,” IEEE Photon. Technol. Lett. 15(11), 1636–1638 (2003).
[Crossref]

Ly-Gagnon, D.-S.

Mandai, K.

Otani, A.

Ryf, R.

Sasaki, S.

Sekine, K.

Shida, K.

Sunnreud, H.

Takushima, Y.

Y. Takushima, H. Y. Choi, and Y. C. Chung, “Measurement of differential phasor diagram of multilevel DPSK signals by using an adjustment-free delay interferometer composed of a 3 x 3 optical coupler,” J. Lightwave Technol. 27(6), 718–730 (2009).
[Crossref]

Y. Takushima, H. Y. Choi, H. Kim, and Y. C. Chung, “Quality monitoring of DxPSK signals by using differential phasor diagram,” IEEE Photon. Technol. Lett. 21(18), 1305–1307 (2009).
[Crossref]

Tsuda, Y.

Tsukamoto, S.

Viterbi, A. J.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Viterbi, A. M.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Wei, X.

X. Wei, X. Liu, and C. Xu, “Numerical simulation of the SPM penalty in a 10-Gb/s RZ-DPSK system,” IEEE Photon. Technol. Lett. 15(11), 1636–1638 (2003).
[Crossref]

Westlund, M.

Winzer, P. J.

Xu, C.

X. Wei, X. Liu, and C. Xu, “Numerical simulation of the SPM penalty in a 10-Gb/s RZ-DPSK system,” IEEE Photon. Technol. Lett. 15(11), 1636–1638 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 563–570 (2006).
[Crossref]

Y. Han and G. Li, “Theoretical sensitivity of direct-detection multilevel modulation formats for high spectral efficiency optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 571–580 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (2)

X. Wei, X. Liu, and C. Xu, “Numerical simulation of the SPM penalty in a 10-Gb/s RZ-DPSK system,” IEEE Photon. Technol. Lett. 15(11), 1636–1638 (2003).
[Crossref]

Y. Takushima, H. Y. Choi, H. Kim, and Y. C. Chung, “Quality monitoring of DxPSK signals by using differential phasor diagram,” IEEE Photon. Technol. Lett. 21(18), 1305–1307 (2009).
[Crossref]

IEEE Trans. Inf. Theory (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

J. Lightwave Technol. (6)

Opt. Express (1)

Other (2)

K. Tanimura, and H. Ohta, “Monitoring of DPSK/DQPSK signals using 1-bit delayed self-homodyne detection with optical phase diversity,” in Proceedings of European Conference on Optical Communications 2007, Paper P065, 2007.

H. G. Choi, Y. Takushima, and Y. C. Chung, “Phasor monitoring of DxPSK signals using software-based synchronization technique,” in Proceedings of Optical Fiber Communications Conference 2010, paper OThE6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the phasor monitor implemented by using the proposed software-based synchronization technique. D(nTs ): differential electric field, fs : sampling rate, fa : aliased clock frequency.
Fig. 2
Fig. 2 Phase and differential phasor of DQPSK signal. (a) and (b) are phase and differential phasor measured by using asynchronously sampled data before software synchronization, respectively. (c) and (d) are phase eye diagram and constellation diagram after software synchronization, respectively.
Fig. 3
Fig. 3 Timing chart of signal, sampling clock, and sampled data.
Fig. 4
Fig. 4 Block diagram of the proposed software-based synchronization algorithm.
Fig. 5
Fig. 5 (a) Power spectrum of the 10.7-Gsymbol/s DQPSK signal obtained by sampling asynchronously at 9.77 MS/s (i.e., the aliased signal). (b) power spectrum of the same DQPSK signal obtained by sampling at 50-GS/s (i.e., the original spectrum).
Fig. 6
Fig. 6 The measured constellation diagrams of the DQPSK and D8PSK signal for various OSNRs. (a), (b): Phasor diagrams of DQPSK signals at OSNR 20.0 dB and 10.8 dB, respectively. (c), (d): Phasor diagrams of D8PSK signals at OSNR 22.6 dB and 12.4 dB, respectively.
Fig. 7
Fig. 7 Standard deviations of the optical phase noises of DQPSK signal as a function of the sampling rate.
Fig. 8
Fig. 8 Estimated BERs for 10.7-GSymbol/s DQPSK and D8PSK signals. (a) Measured BER vs. phase noise deviation of the symbols obtained from the constellation diagram. The solid curves represent the theoretically calculated values. (b) Measured BER vs. estimated BER by using the proposed phasor monitor.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

τ = 1 f s M T
B = M f s + f a .
τ T = f a f s .

Metrics