Abstract

We investigated terahertz pulses from a rotating fan-out type poled lithium niobate (LiNbO3) pumped by femtosecond laser pulses. In particular, the rotating fan-out type poled sample produces an uncertain phase-matching wave vector perpendicular to input laser pulses. Such a wave vector allowed us to observe terahertz pulses normally unobservable from bulk or periodically poled LiNbO3 at large rotation angles because of the terahertz wave critical angle of LiNbO3. Further, we explained center frequency dependence on rotation angles by difference frequency generation process with the uncertain wave vector. We also discussed bandwidth dependence and terahertz pulse power regarding rotation angles.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanausks, “Generation of narrowband terahertz radiation via optical rectification of femtosecon pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505 (2000).
    [CrossRef]
  2. Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanausks, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244 (2000).
    [CrossRef]
  3. Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanausks, “Domain mapping of periodically poled lithium niobate via terahertz waveform analysys,” Appl. Phys. Lett. 77(16), 2488 (2000).
    [CrossRef]
  4. Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanausks, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78(23), 3583 (2001).
    [CrossRef]
  5. Y.-S. Lee and T. B. Norris, “Terahertz pulse shaping and optimal waveform generation in poled ferroelectric crystals,” J. Opt. Soc. Am. B 19(11), 2791 (2002).
    [CrossRef]
  6. N. E. Yu, C. Jung, C.-S. Kee, Y. L. Lee, B.-A. Yu, D.-K. Ko, and J. Lee, “Backward Terahertz Generation in Periodically Poled Lithium Niobate Crystal via Difference Frequency Generation,” Jpn. J. Appl. Phys. 46(No. 4A), 1501–1504 (2007).
    [CrossRef]
  7. N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C.-S. Kee, D.-K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
    [CrossRef]
  8. J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
    [CrossRef]
  9. J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B 86(2), 197–208 (2007).
    [CrossRef]
  10. J. R. Danielson, N. Amer, and Y.-S. Lee, “Generation of arbitrary terahertz wave forms in fanned-out periodically poled lithium niobate,” Appl. Phys. Lett. 89(21), 211118 (2006).
    [CrossRef]
  11. J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. 32(10), 1284–1286 (2007).
    [CrossRef] [PubMed]
  12. W. C. Hurlbut, B. J. Norton, N. Amer, and Y.-S. Lee, “Manipulation of terahertz waveforms in nonlinear optical crystals by shaped optical pulses,” J. Opt. Soc. Am. B 23(1), 90 (2006).
    [CrossRef]
  13. C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett. 26(8), 563–565 (2001).
    [CrossRef]

2008 (1)

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C.-S. Kee, D.-K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[CrossRef]

2007 (4)

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B 86(2), 197–208 (2007).
[CrossRef]

N. E. Yu, C. Jung, C.-S. Kee, Y. L. Lee, B.-A. Yu, D.-K. Ko, and J. Lee, “Backward Terahertz Generation in Periodically Poled Lithium Niobate Crystal via Difference Frequency Generation,” Jpn. J. Appl. Phys. 46(No. 4A), 1501–1504 (2007).
[CrossRef]

J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. 32(10), 1284–1286 (2007).
[CrossRef] [PubMed]

2006 (2)

W. C. Hurlbut, B. J. Norton, N. Amer, and Y.-S. Lee, “Manipulation of terahertz waveforms in nonlinear optical crystals by shaped optical pulses,” J. Opt. Soc. Am. B 23(1), 90 (2006).
[CrossRef]

J. R. Danielson, N. Amer, and Y.-S. Lee, “Generation of arbitrary terahertz wave forms in fanned-out periodically poled lithium niobate,” Appl. Phys. Lett. 89(21), 211118 (2006).
[CrossRef]

2002 (1)

2001 (2)

C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett. 26(8), 563–565 (2001).
[CrossRef]

Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanausks, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78(23), 3583 (2001).
[CrossRef]

2000 (3)

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanausks, “Generation of narrowband terahertz radiation via optical rectification of femtosecon pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanausks, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanausks, “Domain mapping of periodically poled lithium niobate via terahertz waveform analysys,” Appl. Phys. Lett. 77(16), 2488 (2000).
[CrossRef]

Amer, N.

J. R. Danielson, N. Amer, and Y.-S. Lee, “Generation of arbitrary terahertz wave forms in fanned-out periodically poled lithium niobate,” Appl. Phys. Lett. 89(21), 211118 (2006).
[CrossRef]

W. C. Hurlbut, B. J. Norton, N. Amer, and Y.-S. Lee, “Manipulation of terahertz waveforms in nonlinear optical crystals by shaped optical pulses,” J. Opt. Soc. Am. B 23(1), 90 (2006).
[CrossRef]

Avetisyan, Y.

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B 86(2), 197–208 (2007).
[CrossRef]

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett. 26(8), 563–565 (2001).
[CrossRef]

Beigang, R.

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B 86(2), 197–208 (2007).
[CrossRef]

C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett. 26(8), 563–565 (2001).
[CrossRef]

Danielson, J. R.

J. R. Danielson, N. Amer, and Y.-S. Lee, “Generation of arbitrary terahertz wave forms in fanned-out periodically poled lithium niobate,” Appl. Phys. Lett. 89(21), 211118 (2006).
[CrossRef]

DeCamp, M.

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanausks, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244 (2000).
[CrossRef]

Fejer, M. M.

Galvanausks, A.

Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanausks, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78(23), 3583 (2001).
[CrossRef]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanausks, “Generation of narrowband terahertz radiation via optical rectification of femtosecon pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanausks, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanausks, “Domain mapping of periodically poled lithium niobate via terahertz waveform analysys,” Appl. Phys. Lett. 77(16), 2488 (2000).
[CrossRef]

Hurlbut, W. C.

Jung, C.

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C.-S. Kee, D.-K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[CrossRef]

N. E. Yu, C. Jung, C.-S. Kee, Y. L. Lee, B.-A. Yu, D.-K. Ko, and J. Lee, “Backward Terahertz Generation in Periodically Poled Lithium Niobate Crystal via Difference Frequency Generation,” Jpn. J. Appl. Phys. 46(No. 4A), 1501–1504 (2007).
[CrossRef]

Kang, C.

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C.-S. Kee, D.-K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[CrossRef]

Kee, C.-S.

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C.-S. Kee, D.-K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[CrossRef]

N. E. Yu, C. Jung, C.-S. Kee, Y. L. Lee, B.-A. Yu, D.-K. Ko, and J. Lee, “Backward Terahertz Generation in Periodically Poled Lithium Niobate Crystal via Difference Frequency Generation,” Jpn. J. Appl. Phys. 46(No. 4A), 1501–1504 (2007).
[CrossRef]

Kitamura, K.

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C.-S. Kee, D.-K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[CrossRef]

Ko, D.-K.

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C.-S. Kee, D.-K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[CrossRef]

N. E. Yu, C. Jung, C.-S. Kee, Y. L. Lee, B.-A. Yu, D.-K. Ko, and J. Lee, “Backward Terahertz Generation in Periodically Poled Lithium Niobate Crystal via Difference Frequency Generation,” Jpn. J. Appl. Phys. 46(No. 4A), 1501–1504 (2007).
[CrossRef]

L’huillier, J. A.

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B 86(2), 197–208 (2007).
[CrossRef]

Lee, J.

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C.-S. Kee, D.-K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[CrossRef]

N. E. Yu, C. Jung, C.-S. Kee, Y. L. Lee, B.-A. Yu, D.-K. Ko, and J. Lee, “Backward Terahertz Generation in Periodically Poled Lithium Niobate Crystal via Difference Frequency Generation,” Jpn. J. Appl. Phys. 46(No. 4A), 1501–1504 (2007).
[CrossRef]

Lee, Y. L.

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C.-S. Kee, D.-K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[CrossRef]

N. E. Yu, C. Jung, C.-S. Kee, Y. L. Lee, B.-A. Yu, D.-K. Ko, and J. Lee, “Backward Terahertz Generation in Periodically Poled Lithium Niobate Crystal via Difference Frequency Generation,” Jpn. J. Appl. Phys. 46(No. 4A), 1501–1504 (2007).
[CrossRef]

Lee, Y.-S.

J. R. Danielson, N. Amer, and Y.-S. Lee, “Generation of arbitrary terahertz wave forms in fanned-out periodically poled lithium niobate,” Appl. Phys. Lett. 89(21), 211118 (2006).
[CrossRef]

W. C. Hurlbut, B. J. Norton, N. Amer, and Y.-S. Lee, “Manipulation of terahertz waveforms in nonlinear optical crystals by shaped optical pulses,” J. Opt. Soc. Am. B 23(1), 90 (2006).
[CrossRef]

Y.-S. Lee and T. B. Norris, “Terahertz pulse shaping and optimal waveform generation in poled ferroelectric crystals,” J. Opt. Soc. Am. B 19(11), 2791 (2002).
[CrossRef]

Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanausks, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78(23), 3583 (2001).
[CrossRef]

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanausks, “Domain mapping of periodically poled lithium niobate via terahertz waveform analysys,” Appl. Phys. Lett. 77(16), 2488 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanausks, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanausks, “Generation of narrowband terahertz radiation via optical rectification of femtosecon pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505 (2000).
[CrossRef]

Meade, T.

Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanausks, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78(23), 3583 (2001).
[CrossRef]

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanausks, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanausks, “Domain mapping of periodically poled lithium niobate via terahertz waveform analysys,” Appl. Phys. Lett. 77(16), 2488 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanausks, “Generation of narrowband terahertz radiation via optical rectification of femtosecon pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505 (2000).
[CrossRef]

Naudeau, M. L.

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanausks, “Domain mapping of periodically poled lithium niobate via terahertz waveform analysys,” Appl. Phys. Lett. 77(16), 2488 (2000).
[CrossRef]

Norris, T. B.

Y.-S. Lee and T. B. Norris, “Terahertz pulse shaping and optimal waveform generation in poled ferroelectric crystals,” J. Opt. Soc. Am. B 19(11), 2791 (2002).
[CrossRef]

Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanausks, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78(23), 3583 (2001).
[CrossRef]

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanausks, “Domain mapping of periodically poled lithium niobate via terahertz waveform analysys,” Appl. Phys. Lett. 77(16), 2488 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanausks, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanausks, “Generation of narrowband terahertz radiation via optical rectification of femtosecon pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505 (2000).
[CrossRef]

Norton, B. J.

Perlin, V.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanausks, “Generation of narrowband terahertz radiation via optical rectification of femtosecon pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505 (2000).
[CrossRef]

Rau, C.

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B 86(2), 197–208 (2007).
[CrossRef]

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

Schaar, J. E.

Takekawa, S.

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C.-S. Kee, D.-K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[CrossRef]

Theuer, M.

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B 86(2), 197–208 (2007).
[CrossRef]

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

Torosyan, G.

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B 86(2), 197–208 (2007).
[CrossRef]

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett. 26(8), 563–565 (2001).
[CrossRef]

Vodopyanov, K. L.

Weiss, C.

Winful, H.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanausks, “Generation of narrowband terahertz radiation via optical rectification of femtosecon pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505 (2000).
[CrossRef]

Yoo, H. K.

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C.-S. Kee, D.-K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[CrossRef]

Yu, B.-A.

N. E. Yu, C. Jung, C.-S. Kee, Y. L. Lee, B.-A. Yu, D.-K. Ko, and J. Lee, “Backward Terahertz Generation in Periodically Poled Lithium Niobate Crystal via Difference Frequency Generation,” Jpn. J. Appl. Phys. 46(No. 4A), 1501–1504 (2007).
[CrossRef]

Yu, N. E.

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C.-S. Kee, D.-K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[CrossRef]

N. E. Yu, C. Jung, C.-S. Kee, Y. L. Lee, B.-A. Yu, D.-K. Ko, and J. Lee, “Backward Terahertz Generation in Periodically Poled Lithium Niobate Crystal via Difference Frequency Generation,” Jpn. J. Appl. Phys. 46(No. 4A), 1501–1504 (2007).
[CrossRef]

Appl. Phys. B (2)

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B 86(2), 197–208 (2007).
[CrossRef]

Appl. Phys. Lett. (6)

J. R. Danielson, N. Amer, and Y.-S. Lee, “Generation of arbitrary terahertz wave forms in fanned-out periodically poled lithium niobate,” Appl. Phys. Lett. 89(21), 211118 (2006).
[CrossRef]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanausks, “Generation of narrowband terahertz radiation via optical rectification of femtosecon pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanausks, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanausks, “Domain mapping of periodically poled lithium niobate via terahertz waveform analysys,” Appl. Phys. Lett. 77(16), 2488 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanausks, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78(23), 3583 (2001).
[CrossRef]

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C.-S. Kee, D.-K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

N. E. Yu, C. Jung, C.-S. Kee, Y. L. Lee, B.-A. Yu, D.-K. Ko, and J. Lee, “Backward Terahertz Generation in Periodically Poled Lithium Niobate Crystal via Difference Frequency Generation,” Jpn. J. Appl. Phys. 46(No. 4A), 1501–1504 (2007).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic view of THz pulse generation from fan-out type poled LiNbO3 rotating at the sampled input face center with respect to the poled direction axis, Z-axis. Input laser and generated THz pulses were propagated on an XY-plane.

Fig. 2
Fig. 2

Time-domain waveforms of THz pulses during sample clockwise (a) and counter-clockwise rotation (c) with rotation angle α = 40°, and THz pulse spectra during sample clockwise (b) and counter-clockwise rotation (d) with rotation angle α = 0°, 10°, 20°, 30° and 40°.

Fig. 3
Fig. 3

Center frequency dependence of the measured THz pulses on the rotation angle.

Fig. 4
Fig. 4

Dependence of I(α)THz (solid circles) and S(α)THz on rotation angle α.

Tables (2)

Tables Icon

Table 1 Effective periods calculated from measured f c and Eq. (5) with nlaser = 2.3, nTHz = 5.2, and γ = (sin−1[sinα/nlaser ]– sin−1[sinα/nTHz ]) when α = 0°, 10°, 20°, 30°, and 40°.

Tables Icon

Table 2 Summary of k Λ, k Λ||, k Λ⊥, k THz, and θ, the internal incident angles of THz pulses for clockwise and counter-clockwise rotations when angle α = 0°, 10°, 20°, 30°, and 40°.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k 1 = k 2 + k Λ | | + k Λ + k T H z and c n l a s e r k 1 = c n l a s e r k 2 + c n T H z k T H z ,
n T H z k Λ | | = k T H z ( n l a s e r n T H z cos γ ) and k Λ = k T H z sin γ .
f c = c Λ ( α ) e f f 1 | n l a s e r n T H z cos γ | .
k Λ = 2 π c f c ( n l a s e r 2 2 n l a s e r n T H z cos γ ) + n T H z 2 .

Metrics