Abstract

Based on transformation optics theory, we designed a chirality switching device, such that an object hidden inside would exhibit a reversed chirality (i.e., from left-handedness to right-handedness) for an observer at the far field. Distinct from a perfect mirror which also creates a chirality-reversed image, our device makes the original object completely invisible to the far field observer. Numerical simulations are employed to demonstrate the functionalities of the designed devices in both two- and three-dimensional spaces.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Q. Lin, Y. M. Li, and A. S. C. Chan, Principles and Applications of Asymmetric Synthesis, (John Wiley & Sons, New York, 2001), Chap. 1.
  2. U. J. Meierhenrich, Amino Acids and the Asymmetry of Life, (Springer, Berlin, 2008), Chap. 1.
  3. J. B. Pendry and S. A. Ramakrishna, “Focussing Light Using Negative Refraction,” J. Phys. Condens. Matter 15(37), 6345–6364 (2003).
    [CrossRef]
  4. In this paper, we consider only those sources emitting light rays symmetrically, i.e., for any ray emitted from the source, we can always find another emitted ray going to the opposite direction.
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  6. D. Maystre and S. Enoch, “Perfect lenses made with left-handed materials: Alice’s mirror?” J. Opt. Soc. Am. A 21(1), 122–131 (2004).
    [CrossRef]
  7. Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
    [CrossRef] [PubMed]
  8. Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
    [CrossRef] [PubMed]
  9. U. Leonhardt, “Optical Conformal Mapping,” Science 312(5781), 1777–1780 (2006).
    [CrossRef] [PubMed]
  10. H. Chen, C. T. Chan, and P. Sheng, “Transformation Optics and Metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
    [CrossRef] [PubMed]
  11. L. V. Ahlfors, Complex Analysis, (McGraw-Hill, New York, 1979), Chap. 3&8.
  12. H. Y. Chen and C. T. Chan, “Transformation Media that Rotate Electromagnetic Fields,” Appl. Phys. Lett. 90(24), 241105 (2007).
    [CrossRef]
  13. M. Rahm, D. Schurig, D. A. Robertsa, S. A. Cummera, D. R. Smith, and J. B. Pendry, “Design of Electromagnetic Cloaks and Concentrators Using Form-invariant Coordinate Transformations of Maxwell’s Equations,” Phot. Nano.: Fund. Appl. 6(1), 87–95 (2008).
    [CrossRef]
  14. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field Imaging Beyond the Diffraction Limit,” Opt. Express 14(18), 8247–8256 (2006).
    [CrossRef] [PubMed]
  15. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical Design of Reflectionless Complex Media by Finite Embedded Coordinate Transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
    [CrossRef] [PubMed]
  16. U. Leonhardt and T. G. Philbin, “General Relativity in Electrical Engineering,” N. J. Phys. 8(10), 247 (2006).
    [CrossRef]
  17. L. Bergamin, “Electromagnetic Fields and Boundary Conditions at the Interface of Generalized Transformation Media,” Phys. Rev. A 80(6), 063835 (2009).
    [CrossRef]
  18. COMSOL Multi-physics 3.5, developed by COMSOL ©, network license (2008).
  19. All lengths are rescaled by the working wavelengths taken in the simulations.
  20. Here the shape of device is shown only for identifying the position.
  21. The directional source is formed by an array of 6 × 6 line sources (with lattice constant 0.5.). The pumping fields of these sources are chosen as 
(+1−1+1−1+1−1+1−2+2−2+2−1+1−2+4−4+2−1+1−2+4−4+2−1+1−2+2−2+2−1+1−1+1−1+1−1)
  22. The point source consists of three mutually orthogonal antennae, with pumping fields carefully adjusted to ensure that the resultant radiation pattern in free space exhibits a spherical symmetry.

2010

H. Chen, C. T. Chan, and P. Sheng, “Transformation Optics and Metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[CrossRef] [PubMed]

2009

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[CrossRef] [PubMed]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

L. Bergamin, “Electromagnetic Fields and Boundary Conditions at the Interface of Generalized Transformation Media,” Phys. Rev. A 80(6), 063835 (2009).
[CrossRef]

2008

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical Design of Reflectionless Complex Media by Finite Embedded Coordinate Transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[CrossRef] [PubMed]

M. Rahm, D. Schurig, D. A. Robertsa, S. A. Cummera, D. R. Smith, and J. B. Pendry, “Design of Electromagnetic Cloaks and Concentrators Using Form-invariant Coordinate Transformations of Maxwell’s Equations,” Phot. Nano.: Fund. Appl. 6(1), 87–95 (2008).
[CrossRef]

2007

H. Y. Chen and C. T. Chan, “Transformation Media that Rotate Electromagnetic Fields,” Appl. Phys. Lett. 90(24), 241105 (2007).
[CrossRef]

2006

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field Imaging Beyond the Diffraction Limit,” Opt. Express 14(18), 8247–8256 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical Conformal Mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

U. Leonhardt and T. G. Philbin, “General Relativity in Electrical Engineering,” N. J. Phys. 8(10), 247 (2006).
[CrossRef]

2004

2003

J. B. Pendry and S. A. Ramakrishna, “Focussing Light Using Negative Refraction,” J. Phys. Condens. Matter 15(37), 6345–6364 (2003).
[CrossRef]

2000

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Alekseyev, L. V.

Bergamin, L.

L. Bergamin, “Electromagnetic Fields and Boundary Conditions at the Interface of Generalized Transformation Media,” Phys. Rev. A 80(6), 063835 (2009).
[CrossRef]

Chan, C. T.

H. Chen, C. T. Chan, and P. Sheng, “Transformation Optics and Metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[CrossRef] [PubMed]

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[CrossRef] [PubMed]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

H. Y. Chen and C. T. Chan, “Transformation Media that Rotate Electromagnetic Fields,” Appl. Phys. Lett. 90(24), 241105 (2007).
[CrossRef]

Chen, H.

H. Chen, C. T. Chan, and P. Sheng, “Transformation Optics and Metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[CrossRef] [PubMed]

Chen, H. Y.

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[CrossRef] [PubMed]

H. Y. Chen and C. T. Chan, “Transformation Media that Rotate Electromagnetic Fields,” Appl. Phys. Lett. 90(24), 241105 (2007).
[CrossRef]

Cummer, S. A.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical Design of Reflectionless Complex Media by Finite Embedded Coordinate Transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[CrossRef] [PubMed]

Cummera, S. A.

M. Rahm, D. Schurig, D. A. Robertsa, S. A. Cummera, D. R. Smith, and J. B. Pendry, “Design of Electromagnetic Cloaks and Concentrators Using Form-invariant Coordinate Transformations of Maxwell’s Equations,” Phot. Nano.: Fund. Appl. 6(1), 87–95 (2008).
[CrossRef]

Enoch, S.

Han, D. Z.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[CrossRef] [PubMed]

Jacob, Z.

Lai, Y.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[CrossRef] [PubMed]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Leonhardt, U.

U. Leonhardt, “Optical Conformal Mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

U. Leonhardt and T. G. Philbin, “General Relativity in Electrical Engineering,” N. J. Phys. 8(10), 247 (2006).
[CrossRef]

Maystre, D.

Narimanov, E.

Ng, J.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[CrossRef] [PubMed]

Pendry, J. B.

M. Rahm, D. Schurig, D. A. Robertsa, S. A. Cummera, D. R. Smith, and J. B. Pendry, “Design of Electromagnetic Cloaks and Concentrators Using Form-invariant Coordinate Transformations of Maxwell’s Equations,” Phot. Nano.: Fund. Appl. 6(1), 87–95 (2008).
[CrossRef]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical Design of Reflectionless Complex Media by Finite Embedded Coordinate Transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[CrossRef] [PubMed]

J. B. Pendry and S. A. Ramakrishna, “Focussing Light Using Negative Refraction,” J. Phys. Condens. Matter 15(37), 6345–6364 (2003).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Philbin, T. G.

U. Leonhardt and T. G. Philbin, “General Relativity in Electrical Engineering,” N. J. Phys. 8(10), 247 (2006).
[CrossRef]

Rahm, M.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical Design of Reflectionless Complex Media by Finite Embedded Coordinate Transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[CrossRef] [PubMed]

M. Rahm, D. Schurig, D. A. Robertsa, S. A. Cummera, D. R. Smith, and J. B. Pendry, “Design of Electromagnetic Cloaks and Concentrators Using Form-invariant Coordinate Transformations of Maxwell’s Equations,” Phot. Nano.: Fund. Appl. 6(1), 87–95 (2008).
[CrossRef]

Ramakrishna, S. A.

J. B. Pendry and S. A. Ramakrishna, “Focussing Light Using Negative Refraction,” J. Phys. Condens. Matter 15(37), 6345–6364 (2003).
[CrossRef]

Robertsa, D. A.

M. Rahm, D. Schurig, D. A. Robertsa, S. A. Cummera, D. R. Smith, and J. B. Pendry, “Design of Electromagnetic Cloaks and Concentrators Using Form-invariant Coordinate Transformations of Maxwell’s Equations,” Phot. Nano.: Fund. Appl. 6(1), 87–95 (2008).
[CrossRef]

Schurig, D.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical Design of Reflectionless Complex Media by Finite Embedded Coordinate Transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[CrossRef] [PubMed]

M. Rahm, D. Schurig, D. A. Robertsa, S. A. Cummera, D. R. Smith, and J. B. Pendry, “Design of Electromagnetic Cloaks and Concentrators Using Form-invariant Coordinate Transformations of Maxwell’s Equations,” Phot. Nano.: Fund. Appl. 6(1), 87–95 (2008).
[CrossRef]

Sheng, P.

H. Chen, C. T. Chan, and P. Sheng, “Transformation Optics and Metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[CrossRef] [PubMed]

Smith, D. R.

M. Rahm, D. Schurig, D. A. Robertsa, S. A. Cummera, D. R. Smith, and J. B. Pendry, “Design of Electromagnetic Cloaks and Concentrators Using Form-invariant Coordinate Transformations of Maxwell’s Equations,” Phot. Nano.: Fund. Appl. 6(1), 87–95 (2008).
[CrossRef]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical Design of Reflectionless Complex Media by Finite Embedded Coordinate Transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[CrossRef] [PubMed]

Xiao, J. J.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[CrossRef] [PubMed]

Zhang, Z. Q.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[CrossRef] [PubMed]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

H. Y. Chen and C. T. Chan, “Transformation Media that Rotate Electromagnetic Fields,” Appl. Phys. Lett. 90(24), 241105 (2007).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Condens. Matter

J. B. Pendry and S. A. Ramakrishna, “Focussing Light Using Negative Refraction,” J. Phys. Condens. Matter 15(37), 6345–6364 (2003).
[CrossRef]

N. J. Phys.

U. Leonhardt and T. G. Philbin, “General Relativity in Electrical Engineering,” N. J. Phys. 8(10), 247 (2006).
[CrossRef]

Nat. Mater.

H. Chen, C. T. Chan, and P. Sheng, “Transformation Optics and Metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[CrossRef] [PubMed]

Opt. Express

Phot. Nano.: Fund. Appl.

M. Rahm, D. Schurig, D. A. Robertsa, S. A. Cummera, D. R. Smith, and J. B. Pendry, “Design of Electromagnetic Cloaks and Concentrators Using Form-invariant Coordinate Transformations of Maxwell’s Equations,” Phot. Nano.: Fund. Appl. 6(1), 87–95 (2008).
[CrossRef]

Phys. Rev. A

L. Bergamin, “Electromagnetic Fields and Boundary Conditions at the Interface of Generalized Transformation Media,” Phys. Rev. A 80(6), 063835 (2009).
[CrossRef]

Phys. Rev. Lett.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[CrossRef] [PubMed]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical Design of Reflectionless Complex Media by Finite Embedded Coordinate Transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Science

U. Leonhardt, “Optical Conformal Mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

Other

In this paper, we consider only those sources emitting light rays symmetrically, i.e., for any ray emitted from the source, we can always find another emitted ray going to the opposite direction.

G. Q. Lin, Y. M. Li, and A. S. C. Chan, Principles and Applications of Asymmetric Synthesis, (John Wiley & Sons, New York, 2001), Chap. 1.

U. J. Meierhenrich, Amino Acids and the Asymmetry of Life, (Springer, Berlin, 2008), Chap. 1.

COMSOL Multi-physics 3.5, developed by COMSOL ©, network license (2008).

All lengths are rescaled by the working wavelengths taken in the simulations.

Here the shape of device is shown only for identifying the position.

The directional source is formed by an array of 6 × 6 line sources (with lattice constant 0.5.). The pumping fields of these sources are chosen as 
(+1−1+1−1+1−1+1−2+2−2+2−1+1−2+4−4+2−1+1−2+4−4+2−1+1−2+2−2+2−1+1−1+1−1+1−1)

The point source consists of three mutually orthogonal antennae, with pumping fields carefully adjusted to ensure that the resultant radiation pattern in free space exhibits a spherical symmetry.

L. V. Ahlfors, Complex Analysis, (McGraw-Hill, New York, 1979), Chap. 3&8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) A point source placed inside a semi-infinite n = −1 medium creates a real image in the air region. (b) A point source placed inside a finite-sized n = −1 medium creates multiple images, each observable within only a certain viewing angle range.

Fig. 2
Fig. 2

(a) Geometry of the original EM space in which three layers are sticking together to form a folded space in the inner rhombus region. (b) The inner area is unfolded a little bit. (c) The inner area is unfolded significantly. (d) Geometry of the final physics space where the inner area is unfolded completely. The arrows show the evolutions of three typical rays during the operation, and insets show how this “unfolding” operation is performed, viewed along the center symmetry line.

Fig. 3
Fig. 3

(a) Radiation pattern of a line source placed inside the 2D device. (b) Radiation pattern of a line source placed in free space, at the mirror-reflection position of the source. (c) Radiation pattern of a directional source inside the device, which emits rays only along two directions k = ± ( 1 2 2 , 1 2 2 , 0 ) k 0 . (d) Radiation pattern of another direction source placed in free space, which emits rays only along two directions k = ± ( 1 2 2 , 1 2 2 , 0 ) k 0 .

Fig. 4
Fig. 4

Propagations of plane EM waves polarized with E | | z ^ passing through the device along (a) x ^ direction and (b) ( x ^ + y ^ ) direction.

Fig. 5
Fig. 5

(a) Radiation pattern of a point source placed inside the 3D chirality-switching device in an octahedron shape (see inset). For the purpose of a better illustration, the coordinate system is readjusted with the coordinate origin shifted to the virtual source position. We plot the x, y and z components of electric field in the yz, zx and xy planes of the new coordinate system, correspondingly. Edges of the device are indicated by solid lines in the figure. (b) Electric field distribution on the xy plane with z = −0.235, with the crossing point of the two dotted lines representing the origin of those circular wave-fronts. Fields in some regions are out of scale.

Tables (1)

Tables Icon

Table 1 Coordinate transformation and material parameters in different space regions

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

a ( z ) = a 0 | z |

Metrics