Abstract

We demonstrate simultaneous 10-Gb/s NRZ-to-RZ format conversion and multicasting from one to many data channels in a highly nonlinear fiber (HNLF) with only a single pump. Functionalities are achieved based on various nonlinear effects, such as four-wave-mixing (FWM), cross-gain-modulation (XGM) and cross-phase-modulation (XPM) between the pump channel and the NRZ data channel. Up to five and six converted data channels are error-free (10−9 BER) as the wavelength spacing between the pump and the NRZ signal is set to 0.4-nm and 0.8-nm, respectively.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
    [CrossRef] [PubMed]
  2. H. Nguyen Tan, M. Matsuura, T. Katafuchi, and N. Kishi, “Multiple-channel optical signal processing with wavelength-waveform conversions, pulsewidth tunability, and signal regeneration,” Opt. Express 17(25), 22960–22973 (2009).
    [CrossRef]
  3. P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(9), 1908–1910 (2005).
    [CrossRef]
  4. J. Wang, Q. Sun, and J. Sun, “All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing,” Opt. Express 17(15), 12555–12563 (2009).
    [CrossRef] [PubMed]
  5. W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood., “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
    [CrossRef]
  6. S. Bigo, E. Desurvire, and B. Desruelle, “All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror,” Electron. Lett. 30(22), 1868–1869 (1994).
    [CrossRef]
  7. J. Yu, G. K. Chang, J. Barry, and Y. Su, “40 Gbit/s single format conversion from NRZ to RZ using a Mach-Zehnder delay interfrometer,” Opt. Commun. 248(4-6), 419–422 (2005).
    [CrossRef]
  8. C. H. Kwok and C. Lin, “Polarization-insensitive all-optical NRZ to RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” IEEE J. Sel. Top. Quantum Electron. 12(3), 451–458 (2006).
    [CrossRef]
  9. R. K. Pankaj, ““Wavelength requirements for multicasting in all-optical networks,” IEEE/ACM Trans. 7(3), 414–424 (1999).
    [CrossRef]
  10. B. Wu, S. Fu, J. Wu, P. Shum, N. Q. Ngo, K. Xu, X. Hong, and J. Lin, “40 Gb/s multifunction optical format conversion module with wavelength multicast capability using nondegenerate four-wave mixing in a semiconductor optical amplifier,” J. Lightwave Technol. 27(20), 4446–4454 (2009).
    [CrossRef]
  11. G. K. P. Lei and C. Shu, “4x10 Gb/s time and wavelength multicasting with NRZ to RZ format conversion using four-wave mixng in a highly nolinear photonic crystal fiber,” in Proceedings of Opt. Fiber Comm. (OFC), paper JWA49 (2010).
  12. C. H. Kwok and C. Lin, “Simultaneous 4x10 Gb/s NRZ-to-RZ modulation format conversion in nonlinear optical loop mirror with a photonic crystal fiber,” IEEE Photon. Technol. Lett. 19(22), 1825–1827 (2007).
    [CrossRef]
  13. J. Dong, X. Zhang, F. Wang, Y. Yu, and D. Huang, “Single-to-dual channel NRZ-to-RZ format conversion by four-wave mixing in single semiconductor optical amplifier,” Electron. Lett. 44(12), 763–764 (2008).
    [CrossRef]
  14. D. Wang, T.-H. Cheng, Y.-K. Yeo, J. Liu, Z. Xu, Y. Wang, and G. Xiao, “All-optical modulation-transparent wavelength multicasting in a highly nonlinear fiber Sagnac loop mirror,” Opt. Express 18(10), 10343–10353 (2010).
    [CrossRef] [PubMed]
  15. C.-S. Bres, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
    [CrossRef]
  16. G. W. Lu, K. S. Abedin, and T. Miyazaki, “DPSK multicast using multiple-pump FWM in Bismuths highly nonlinear fiber with high multicast efficiency,” Opt. Express 16(26), 21964–21970 (2008).
    [CrossRef] [PubMed]
  17. G. Contestabile, M. Presi, and E. Ciaramella, “Multiple wavelength conversion for WDM multicasting by FWM in an SOA,” IEEE Photon. Technol. Lett. 16(7), 1775–1777 (2004).
    [CrossRef]
  18. M. P. Fok and C. Shu, “Multipump four-wave mixing in a photonic crystal fiber for 6x10 Gb/s wavelength multicasting of DPSK signals,” IEEE Photon. Technol. Lett. 19(15), 1166–1168 (2007).
    [CrossRef]
  19. Y. Wang, C. Yu, T. Luo, L.-S. Yan, Z. Pan, and A. E. Willner, “Tunable all-optical wavelength conversion and wavelength multicasting using orthogonally polarized fiber FWM,” J. Lightwave Technol. 23(10), 3331–3338 (2005).
    [CrossRef]
  20. A.-L. Yi, L.-S. Yan, B. Luo, W. Pan, J. Ye, and J. Leuthold, “Self-phase-modulation based all-optical regeneration of PDM signals using a single section of highly-nonlinear fiber,” Opt. Express 18(7), 7150–7156 (2010).
    [CrossRef] [PubMed]

2010

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood., “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

D. Wang, T.-H. Cheng, Y.-K. Yeo, J. Liu, Z. Xu, Y. Wang, and G. Xiao, “All-optical modulation-transparent wavelength multicasting in a highly nonlinear fiber Sagnac loop mirror,” Opt. Express 18(10), 10343–10353 (2010).
[CrossRef] [PubMed]

A.-L. Yi, L.-S. Yan, B. Luo, W. Pan, J. Ye, and J. Leuthold, “Self-phase-modulation based all-optical regeneration of PDM signals using a single section of highly-nonlinear fiber,” Opt. Express 18(7), 7150–7156 (2010).
[CrossRef] [PubMed]

2009

2008

J. Dong, X. Zhang, F. Wang, Y. Yu, and D. Huang, “Single-to-dual channel NRZ-to-RZ format conversion by four-wave mixing in single semiconductor optical amplifier,” Electron. Lett. 44(12), 763–764 (2008).
[CrossRef]

G. W. Lu, K. S. Abedin, and T. Miyazaki, “DPSK multicast using multiple-pump FWM in Bismuths highly nonlinear fiber with high multicast efficiency,” Opt. Express 16(26), 21964–21970 (2008).
[CrossRef] [PubMed]

2007

C. H. Kwok and C. Lin, “Simultaneous 4x10 Gb/s NRZ-to-RZ modulation format conversion in nonlinear optical loop mirror with a photonic crystal fiber,” IEEE Photon. Technol. Lett. 19(22), 1825–1827 (2007).
[CrossRef]

M. P. Fok and C. Shu, “Multipump four-wave mixing in a photonic crystal fiber for 6x10 Gb/s wavelength multicasting of DPSK signals,” IEEE Photon. Technol. Lett. 19(15), 1166–1168 (2007).
[CrossRef]

2006

C. H. Kwok and C. Lin, “Polarization-insensitive all-optical NRZ to RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” IEEE J. Sel. Top. Quantum Electron. 12(3), 451–458 (2006).
[CrossRef]

2005

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(9), 1908–1910 (2005).
[CrossRef]

J. Yu, G. K. Chang, J. Barry, and Y. Su, “40 Gbit/s single format conversion from NRZ to RZ using a Mach-Zehnder delay interfrometer,” Opt. Commun. 248(4-6), 419–422 (2005).
[CrossRef]

Y. Wang, C. Yu, T. Luo, L.-S. Yan, Z. Pan, and A. E. Willner, “Tunable all-optical wavelength conversion and wavelength multicasting using orthogonally polarized fiber FWM,” J. Lightwave Technol. 23(10), 3331–3338 (2005).
[CrossRef]

2004

G. Contestabile, M. Presi, and E. Ciaramella, “Multiple wavelength conversion for WDM multicasting by FWM in an SOA,” IEEE Photon. Technol. Lett. 16(7), 1775–1777 (2004).
[CrossRef]

1999

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

R. K. Pankaj, ““Wavelength requirements for multicasting in all-optical networks,” IEEE/ACM Trans. 7(3), 414–424 (1999).
[CrossRef]

1994

S. Bigo, E. Desurvire, and B. Desruelle, “All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror,” Electron. Lett. 30(22), 1868–1869 (1994).
[CrossRef]

Abedin, K. S.

Alic, N.

C.-S. Bres, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[CrossRef]

Andersen, P. A.

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(9), 1908–1910 (2005).
[CrossRef]

Astar, W.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood., “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

Barry, J.

J. Yu, G. K. Chang, J. Barry, and Y. Su, “40 Gbit/s single format conversion from NRZ to RZ using a Mach-Zehnder delay interfrometer,” Opt. Commun. 248(4-6), 419–422 (2005).
[CrossRef]

Bigo, S.

S. Bigo, E. Desurvire, and B. Desruelle, “All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror,” Electron. Lett. 30(22), 1868–1869 (1994).
[CrossRef]

Blow, K. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Bres, C.-S.

C.-S. Bres, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[CrossRef]

Carter, G. M.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood., “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

Chang, G. K.

J. Yu, G. K. Chang, J. Barry, and Y. Su, “40 Gbit/s single format conversion from NRZ to RZ using a Mach-Zehnder delay interfrometer,” Opt. Commun. 248(4-6), 419–422 (2005).
[CrossRef]

Cheng, T.-H.

Ciaramella, E.

G. Contestabile, M. Presi, and E. Ciaramella, “Multiple wavelength conversion for WDM multicasting by FWM in an SOA,” IEEE Photon. Technol. Lett. 16(7), 1775–1777 (2004).
[CrossRef]

Contestabile, G.

G. Contestabile, M. Presi, and E. Ciaramella, “Multiple wavelength conversion for WDM multicasting by FWM in an SOA,” IEEE Photon. Technol. Lett. 16(7), 1775–1777 (2004).
[CrossRef]

Cotter, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Dadap, J. I.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood., “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

Desruelle, B.

S. Bigo, E. Desurvire, and B. Desruelle, “All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror,” Electron. Lett. 30(22), 1868–1869 (1994).
[CrossRef]

Desurvire, E.

S. Bigo, E. Desurvire, and B. Desruelle, “All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror,” Electron. Lett. 30(22), 1868–1869 (1994).
[CrossRef]

Dong, J.

J. Dong, X. Zhang, F. Wang, Y. Yu, and D. Huang, “Single-to-dual channel NRZ-to-RZ format conversion by four-wave mixing in single semiconductor optical amplifier,” Electron. Lett. 44(12), 763–764 (2008).
[CrossRef]

Driscoll, J. B.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood., “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

Ellis, A. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Fok, M. P.

M. P. Fok and C. Shu, “Multipump four-wave mixing in a photonic crystal fiber for 6x10 Gb/s wavelength multicasting of DPSK signals,” IEEE Photon. Technol. Lett. 19(15), 1166–1168 (2007).
[CrossRef]

Fu, S.

Geng, Y.

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(9), 1908–1910 (2005).
[CrossRef]

Green, W. M. J.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood., “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

Hong, X.

Huang, D.

J. Dong, X. Zhang, F. Wang, Y. Yu, and D. Huang, “Single-to-dual channel NRZ-to-RZ format conversion by four-wave mixing in single semiconductor optical amplifier,” Electron. Lett. 44(12), 763–764 (2008).
[CrossRef]

Jeppesen, P.

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(9), 1908–1910 (2005).
[CrossRef]

Katafuchi, T.

Kelly, A. E.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Kishi, N.

Kuo, B. P.-P.

C.-S. Bres, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[CrossRef]

Kwok, C. H.

C. H. Kwok and C. Lin, “Simultaneous 4x10 Gb/s NRZ-to-RZ modulation format conversion in nonlinear optical loop mirror with a photonic crystal fiber,” IEEE Photon. Technol. Lett. 19(22), 1825–1827 (2007).
[CrossRef]

C. H. Kwok and C. Lin, “Polarization-insensitive all-optical NRZ to RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” IEEE J. Sel. Top. Quantum Electron. 12(3), 451–458 (2006).
[CrossRef]

Leuthold, J.

Lin, C.

C. H. Kwok and C. Lin, “Simultaneous 4x10 Gb/s NRZ-to-RZ modulation format conversion in nonlinear optical loop mirror with a photonic crystal fiber,” IEEE Photon. Technol. Lett. 19(22), 1825–1827 (2007).
[CrossRef]

C. H. Kwok and C. Lin, “Polarization-insensitive all-optical NRZ to RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” IEEE J. Sel. Top. Quantum Electron. 12(3), 451–458 (2006).
[CrossRef]

Lin, J.

Liu, J.

Liu, X.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood., “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

Lu, G. W.

Luo, B.

Luo, T.

Manning, R. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Matsuura, M.

Miyazaki, T.

Nesset, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Ngo, N. Q.

Nguyen Tan, H.

Osgood, R. M.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood., “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

Pan, W.

Pan, Z.

Pankaj, R. K.

R. K. Pankaj, ““Wavelength requirements for multicasting in all-optical networks,” IEEE/ACM Trans. 7(3), 414–424 (1999).
[CrossRef]

Peucheret, C.

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(9), 1908–1910 (2005).
[CrossRef]

Phillips, I. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Poustie, A. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Presi, M.

G. Contestabile, M. Presi, and E. Ciaramella, “Multiple wavelength conversion for WDM multicasting by FWM in an SOA,” IEEE Photon. Technol. Lett. 16(7), 1775–1777 (2004).
[CrossRef]

Radic, S.

C.-S. Bres, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[CrossRef]

Rogers, D. C.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Shu, C.

M. P. Fok and C. Shu, “Multipump four-wave mixing in a photonic crystal fiber for 6x10 Gb/s wavelength multicasting of DPSK signals,” IEEE Photon. Technol. Lett. 19(15), 1166–1168 (2007).
[CrossRef]

Shum, P.

Su, Y.

J. Yu, G. K. Chang, J. Barry, and Y. Su, “40 Gbit/s single format conversion from NRZ to RZ using a Mach-Zehnder delay interfrometer,” Opt. Commun. 248(4-6), 419–422 (2005).
[CrossRef]

Sun, J.

Sun, Q.

Tokle, T.

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(9), 1908–1910 (2005).
[CrossRef]

Vlasov, Y. A.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood., “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

Wang, D.

Wang, F.

J. Dong, X. Zhang, F. Wang, Y. Yu, and D. Huang, “Single-to-dual channel NRZ-to-RZ format conversion by four-wave mixing in single semiconductor optical amplifier,” Electron. Lett. 44(12), 763–764 (2008).
[CrossRef]

Wang, J.

Wang, Y.

Wiberg, A. O. J.

C.-S. Bres, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[CrossRef]

Willner, A. E.

Wu, B.

Wu, J.

Xiao, G.

Xu, K.

Xu, Z.

Yan, L.-S.

Ye, J.

Yeo, Y.-K.

Yi, A.-L.

Yu, C.

Yu, J.

J. Yu, G. K. Chang, J. Barry, and Y. Su, “40 Gbit/s single format conversion from NRZ to RZ using a Mach-Zehnder delay interfrometer,” Opt. Commun. 248(4-6), 419–422 (2005).
[CrossRef]

Yu, Y.

J. Dong, X. Zhang, F. Wang, Y. Yu, and D. Huang, “Single-to-dual channel NRZ-to-RZ format conversion by four-wave mixing in single semiconductor optical amplifier,” Electron. Lett. 44(12), 763–764 (2008).
[CrossRef]

Zhang, X.

J. Dong, X. Zhang, F. Wang, Y. Yu, and D. Huang, “Single-to-dual channel NRZ-to-RZ format conversion by four-wave mixing in single semiconductor optical amplifier,” Electron. Lett. 44(12), 763–764 (2008).
[CrossRef]

Electron. Lett.

S. Bigo, E. Desurvire, and B. Desruelle, “All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror,” Electron. Lett. 30(22), 1868–1869 (1994).
[CrossRef]

J. Dong, X. Zhang, F. Wang, Y. Yu, and D. Huang, “Single-to-dual channel NRZ-to-RZ format conversion by four-wave mixing in single semiconductor optical amplifier,” Electron. Lett. 44(12), 763–764 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood., “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

C. H. Kwok and C. Lin, “Polarization-insensitive all-optical NRZ to RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” IEEE J. Sel. Top. Quantum Electron. 12(3), 451–458 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(9), 1908–1910 (2005).
[CrossRef]

C. H. Kwok and C. Lin, “Simultaneous 4x10 Gb/s NRZ-to-RZ modulation format conversion in nonlinear optical loop mirror with a photonic crystal fiber,” IEEE Photon. Technol. Lett. 19(22), 1825–1827 (2007).
[CrossRef]

C.-S. Bres, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[CrossRef]

G. Contestabile, M. Presi, and E. Ciaramella, “Multiple wavelength conversion for WDM multicasting by FWM in an SOA,” IEEE Photon. Technol. Lett. 16(7), 1775–1777 (2004).
[CrossRef]

M. P. Fok and C. Shu, “Multipump four-wave mixing in a photonic crystal fiber for 6x10 Gb/s wavelength multicasting of DPSK signals,” IEEE Photon. Technol. Lett. 19(15), 1166–1168 (2007).
[CrossRef]

IEEE/ACM Trans.

R. K. Pankaj, ““Wavelength requirements for multicasting in all-optical networks,” IEEE/ACM Trans. 7(3), 414–424 (1999).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

J. Yu, G. K. Chang, J. Barry, and Y. Su, “40 Gbit/s single format conversion from NRZ to RZ using a Mach-Zehnder delay interfrometer,” Opt. Commun. 248(4-6), 419–422 (2005).
[CrossRef]

Opt. Express

Science

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Other

G. K. P. Lei and C. Shu, “4x10 Gb/s time and wavelength multicasting with NRZ to RZ format conversion using four-wave mixng in a highly nolinear photonic crystal fiber,” in Proceedings of Opt. Fiber Comm. (OFC), paper JWA49 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Principle of the proposed scheme for NRZ-to-RZ format conversion and one-to-many multicasting based on various effects in highly nonlinear fiber. FWM: four-wave-mixing; XGM: cross-gain-modulation; XPM: cross-phase-modulation

Fig. 2
Fig. 2

Experimental setup. ECL: external cavity (tunable) laser; DFB: distributed-feedback laser; HNLF: highly nonlinear fiber; MZM: Mach-Zehnder modulator; VOA: variable optical attenuator; BERT: bit-error-rate tester; OSA: optical spectrum analyzer; VDL: variable (optical) delay line

Fig. 3
Fig. 3

Results for the wavelength spacing between the pump and signal channels as 0.4-nm (a) spectra under different pump power; (b) measured BER performance for all the channels as the pump power of 20 dBm (among seven converted RZ channels, five can be error-free).

Fig. 4
Fig. 4

Typical eye diagrams for different channels under 20-dBm pump power as the wavelength spacing of 0.4-nm. (a1) original pump signal (clock); (a2) original data signal (NRZ); (b1) converted RZ signal from the clock through XGM; (b2) converted RZ signal from the original NRZ through XPM (detuned optical filtering is required)

Fig. 5
Fig. 5

Results for the wavelength spacing between the pump and signal channels as 0.8-nm (a) spectra under different pump power; (b) measured BER performance for all the channels as the pump power of 20 dBm (among eight converted RZ channels, six can be error-free).

Fig. 6
Fig. 6

Typical eye diagrams for different channels under 20-dBm pump power as the wavelength spacing of 0.8-nm (1556.00-nm corresponds to the original clock or pump channel; 1556.86-nm corresponds to the converted RZ channel from the original NRZ channel based on XPM effect and detuned filtering).

Fig. 7
Fig. 7

Generated multicasting spectra as the wavelengths of the pump (clock) and the NRZ data shift crossing the EDFA gain spectrum (dark line). The wavelength spacing between the clock and NRZ channels is fixed to 0.8-nm, while the input power into the HNLF is set to 20-dBm.

Metrics