Abstract

We demonstrate numerically that a cavity can be induced in a defect-free photonic crystal slab made of photosensitive material such as chalcogenide glass. A key advantage of the design is the possibility for complete post-processing in an otherwise defect-free structure, and the cavity can thus be formed anywhere in the photonic crystal. We demonstrate that high-Q cavities with Q~108 can be designed in this way. Since the high-Q mode can originate from an air-band, these cavities appear to be ideal candidates for sensing applications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  2. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [CrossRef]
  3. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
    [CrossRef]
  4. S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14(25), 12451–12456 (2006).
    [CrossRef] [PubMed]
  5. U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33(19), 2206–2208 (2008).
    [CrossRef] [PubMed]
  6. F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
    [CrossRef]
  7. B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
    [CrossRef]
  8. R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
    [CrossRef]
  9. P. El-Kallassi, S. Balog, R. Houdré, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, R. Ferrini, and L. Zuppiroli, “Local infiltration of planar photonic crystals with UV-curable polymers,” J. Opt. Soc. Am. B 25(10), 1562–1567 (2008).
    [CrossRef]
  10. S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q cavities in multilayer photonic crystal slabs,” Opt. Express 15(25), 17248–17253 (2007).
    [CrossRef] [PubMed]
  11. S. Gardin, F. Bordas, X. Letartre, C. Seassal, A. Rahmani, R. Bozio, and P. Viktorovitch, “Microlasers based on effective index confined slow light modes in photonic crystal waveguides,” Opt. Express 16(9), 6331–6339 (2008).
    [CrossRef] [PubMed]
  12. M.-K. Seo, J. H. Kang, M.-K. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, H.-G. Park, and Y.-H. Lee, “Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition,” Opt. Express 17(8), 6790–6798 (2009).
    [CrossRef] [PubMed]
  13. S. Tomljenovic-Hanic, M. J. Steel, C. Martijn de Sterke, and D. J. Moss, “High-Q cavities in photosensitive photonic crystals,” Opt. Lett. 32(5), 542–544 (2007).
    [CrossRef] [PubMed]
  14. A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
    [CrossRef]
  15. M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Mägi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D.-Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 34(23), 3671–3673 (2009).
    [CrossRef] [PubMed]
  16. J.-Y. Kim, M.-K. Kim, M.-K. Seo, S.-H. Kwon, J.-H. Shin, and Y.-H. Lee, “Two-dimensionally relocatable microfiber-coupled photonic crystal resonator,” Opt. Express 17(15), 13009–13016 (2009).
    [CrossRef] [PubMed]
  17. K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
    [CrossRef]
  18. F. Bordas, M. J. Steel, C. Seassal, and A. Rahmani, “Confinement of band-edge modes in a photonic crystal slab,” Opt. Express 15(17), 10890–10902 (2007).
    [CrossRef] [PubMed]
  19. F. Bordas, C. Seassal, E. Dupuy, P. Regreny, M. Gendry, P. Viktorovitch, M. J. Steel, and A. Rahmani, “Room temperature low-threshold InAs/InP quantum dot single mode photonic crystal microlasers at 1.5 microm using cavity-confined slow light,” Opt. Express 17(7), 5439–5445 (2009).
    [CrossRef] [PubMed]
  20. Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air-holes,” Appl. Phys. Lett. 82(11), 1661 (2003).
    [CrossRef]
  21. V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107(17), 6756–6769 (1997).
    [CrossRef]
  22. S. Tomljenovic-Hanic and C. M. de Sterke, “High-Q cavity design in photonic crystal heterostructures,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technol., OSA Technical Digest, JTuA125 (2008).
  23. H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
    [CrossRef]
  24. D. Englund, I. Fushman, and J. Vucković, “General recipe for designing photonic crystal cavities,” Opt. Express 13(16), 5961–5975 (2005).
    [CrossRef] [PubMed]
  25. Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12(17), 3988–3995 (2004).
    [CrossRef] [PubMed]
  26. S. Tomljenovic-Hanic, A. Rahmani, M. J. Steel, and C. Martijn de Sterke, “Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors,” Opt. Express 17(17), 14552–14557 (2009).
    [CrossRef] [PubMed]
  27. N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
    [CrossRef]
  28. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
    [CrossRef]
  29. P. Skafte-Pedersen, P. S. Nunes, S. S. Xiao, and N. A. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors (Basel Switzerland) 9(11), 8382–8390 (2009).
    [CrossRef]
  30. S. Tomljenovic-Hanic, A. D. Greentree, C. M. de Sterke, and S. Prawer, “Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs,” Opt. Express 17(8), 6465–6475 (2009).
    [CrossRef] [PubMed]

2009 (9)

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[CrossRef]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[CrossRef]

P. Skafte-Pedersen, P. S. Nunes, S. S. Xiao, and N. A. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors (Basel Switzerland) 9(11), 8382–8390 (2009).
[CrossRef]

F. Bordas, C. Seassal, E. Dupuy, P. Regreny, M. Gendry, P. Viktorovitch, M. J. Steel, and A. Rahmani, “Room temperature low-threshold InAs/InP quantum dot single mode photonic crystal microlasers at 1.5 microm using cavity-confined slow light,” Opt. Express 17(7), 5439–5445 (2009).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, A. D. Greentree, C. M. de Sterke, and S. Prawer, “Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs,” Opt. Express 17(8), 6465–6475 (2009).
[CrossRef] [PubMed]

M.-K. Seo, J. H. Kang, M.-K. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, H.-G. Park, and Y.-H. Lee, “Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition,” Opt. Express 17(8), 6790–6798 (2009).
[CrossRef] [PubMed]

J.-Y. Kim, M.-K. Kim, M.-K. Seo, S.-H. Kwon, J.-H. Shin, and Y.-H. Lee, “Two-dimensionally relocatable microfiber-coupled photonic crystal resonator,” Opt. Express 17(15), 13009–13016 (2009).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, A. Rahmani, M. J. Steel, and C. Martijn de Sterke, “Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors,” Opt. Express 17(17), 14552–14557 (2009).
[CrossRef] [PubMed]

M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Mägi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D.-Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 34(23), 3671–3673 (2009).
[CrossRef] [PubMed]

2008 (4)

2007 (3)

2006 (4)

S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14(25), 12451–12456 (2006).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

2005 (2)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

D. Englund, I. Fushman, and J. Vucković, “General recipe for designing photonic crystal cavities,” Opt. Express 13(16), 5961–5975 (2005).
[CrossRef] [PubMed]

2004 (2)

Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12(17), 3988–3995 (2004).
[CrossRef] [PubMed]

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[CrossRef]

2003 (3)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[CrossRef]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air-holes,” Appl. Phys. Lett. 82(11), 1661 (2003).
[CrossRef]

1997 (1)

V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107(17), 6756–6769 (1997).
[CrossRef]

1995 (1)

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[CrossRef]

Ahn, B.-H.

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air-holes,” Appl. Phys. Lett. 82(11), 1661 (2003).
[CrossRef]

Asano, T.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air-holes,” Appl. Phys. Lett. 82(11), 1661 (2003).
[CrossRef]

Baehr-Jones, T.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[CrossRef]

Balet, L.

Balog, S.

Bastiaansen, C. W. M.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

Bettotti, P.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

Bog, U.

Bordas, F.

Bozio, R.

Broer, D. J.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

Bulla, D. A. P.

Carlstrom, C. F.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

Choi, D.-Y.

Colocci, M.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

de Sterke, C. M.

Di Falco, A.

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[CrossRef]

Dupuy, E.

Eggleton, B. J.

El-Kallassi, P.

Elliot, S. R.

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[CrossRef]

Elliott, S. R.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[CrossRef]

Englund, D.

Ferrini, R.

Fiore, A.

Francardi, M.

Fushman, I.

Gai, X.

Gardin, S.

Gendry, M.

Gerardino, A.

Greentree, A. D.

Grillet, C.

Hagino, H.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[CrossRef]

Hochberg, M.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[CrossRef]

Houdré, R.

Intonti, F.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

Jeong, K.-Y.

Kang, J. H.

Karnutsch, C.

Karouta, F.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

Kim, J.-Y.

Kim, M.-K.

Kjellander, B. K. C.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

Kolobov, A.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[CrossRef]

Krauss, T. F.

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Kwon, S.-H.

Lee, M. W.

Lee, Y.-H.

Letartre, X.

Li, L.

Loncar, M.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[CrossRef]

Luther-Davies, B.

Madden, S.

Mägi, E. C.

Mandelshtam, V. A.

V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107(17), 6756–6769 (1997).
[CrossRef]

Martijn de Sterke, C.

Maune, B.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[CrossRef]

McPhedran, R. C.

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Monat, C.

Mortensen, N. A.

P. Skafte-Pedersen, P. S. Nunes, S. S. Xiao, and N. A. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors (Basel Switzerland) 9(11), 8382–8390 (2009).
[CrossRef]

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
[CrossRef]

Moss, D. J.

Noda, S.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[CrossRef]

S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q cavities in multilayer photonic crystal slabs,” Opt. Express 15(25), 17248–17253 (2007).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air-holes,” Appl. Phys. Lett. 82(11), 1661 (2003).
[CrossRef]

Notomi, M.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Notzel, R.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

Nunes, P. S.

P. Skafte-Pedersen, P. S. Nunes, S. S. Xiao, and N. A. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors (Basel Switzerland) 9(11), 8382–8390 (2009).
[CrossRef]

O’Faolain, L.

Park, H.-G.

Pavesi, L.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

Pedersen, J.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
[CrossRef]

Prawer, S.

Psaltis, D.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[CrossRef]

Qiu, M.

Qiu, Y.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[CrossRef]

Rahmani, A.

Regreny, P.

Salemink, H. W. M.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

Scherer, A.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[CrossRef]

Schweizer, S. L.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

Seassal, C.

Seo, M.-K.

Shimakawa, K.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[CrossRef]

Shin, J.-H.

Shinya, A.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Skafte-Pedersen, P.

P. Skafte-Pedersen, P. S. Nunes, S. S. Xiao, and N. A. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors (Basel Switzerland) 9(11), 8382–8390 (2009).
[CrossRef]

Smith, C. L. C.

Snijders, J. A. P.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

Song, B. S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Song, B.-S.

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air-holes,” Appl. Phys. Lett. 82(11), 1661 (2003).
[CrossRef]

Steel, M. J.

Takahashi, Y.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[CrossRef]

Tanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Tanaka, Y.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[CrossRef]

S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q cavities in multilayer photonic crystal slabs,” Opt. Express 15(25), 17248–17253 (2007).
[CrossRef] [PubMed]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air-holes,” Appl. Phys. Lett. 82(11), 1661 (2003).
[CrossRef]

Taylor, H. S.

V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107(17), 6756–6769 (1997).
[CrossRef]

Tomljenovic-Hanic, S.

M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Mägi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D.-Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 34(23), 3671–3673 (2009).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, A. D. Greentree, C. M. de Sterke, and S. Prawer, “Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs,” Opt. Express 17(8), 6465–6475 (2009).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, A. Rahmani, M. J. Steel, and C. Martijn de Sterke, “Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors,” Opt. Express 17(17), 14552–14557 (2009).
[CrossRef] [PubMed]

U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33(19), 2206–2208 (2008).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q cavities in multilayer photonic crystal slabs,” Opt. Express 15(25), 17248–17253 (2007).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, M. J. Steel, C. Martijn de Sterke, and D. J. Moss, “High-Q cavities in photosensitive photonic crystals,” Opt. Lett. 32(5), 542–544 (2007).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14(25), 12451–12456 (2006).
[CrossRef] [PubMed]

Turck, V.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

van der Drift, E.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

van der Heijden, R.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

van der Heijden, R. W.

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

Vignolini, S.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

Viktorovitch, P.

Vuckovic, J.

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Wehrspohn, R.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

Wiersma, D.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

Witzens, J.

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[CrossRef]

Xiao, S.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
[CrossRef]

Xiao, S. S.

P. Skafte-Pedersen, P. S. Nunes, S. S. Xiao, and N. A. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors (Basel Switzerland) 9(11), 8382–8390 (2009).
[CrossRef]

Zakery, A.

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[CrossRef]

Zhang, Z.

Zuppiroli, L.

Adv. Phys. (1)

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[CrossRef]

Appl. Phys. Lett. (6)

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air-holes,” Appl. Phys. Lett. 82(11), 1661 (2003).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360–362 (2004).
[CrossRef]

R. van der Heijden, C. F. Carlstrom, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Notzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. van der Drift, “E van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88(16), 161112 (2006).
[CrossRef]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[CrossRef]

J. Chem. Phys. (1)

V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107(17), 6756–6769 (1997).
[CrossRef]

J. Non-Cryst. Solids (1)

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Microfluid. Nanofluid. (1)

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
[CrossRef]

Nat. Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Opt. Express (11)

Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12(17), 3988–3995 (2004).
[CrossRef] [PubMed]

D. Englund, I. Fushman, and J. Vucković, “General recipe for designing photonic crystal cavities,” Opt. Express 13(16), 5961–5975 (2005).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14(25), 12451–12456 (2006).
[CrossRef] [PubMed]

F. Bordas, M. J. Steel, C. Seassal, and A. Rahmani, “Confinement of band-edge modes in a photonic crystal slab,” Opt. Express 15(17), 10890–10902 (2007).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q cavities in multilayer photonic crystal slabs,” Opt. Express 15(25), 17248–17253 (2007).
[CrossRef] [PubMed]

S. Gardin, F. Bordas, X. Letartre, C. Seassal, A. Rahmani, R. Bozio, and P. Viktorovitch, “Microlasers based on effective index confined slow light modes in photonic crystal waveguides,” Opt. Express 16(9), 6331–6339 (2008).
[CrossRef] [PubMed]

F. Bordas, C. Seassal, E. Dupuy, P. Regreny, M. Gendry, P. Viktorovitch, M. J. Steel, and A. Rahmani, “Room temperature low-threshold InAs/InP quantum dot single mode photonic crystal microlasers at 1.5 microm using cavity-confined slow light,” Opt. Express 17(7), 5439–5445 (2009).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, A. D. Greentree, C. M. de Sterke, and S. Prawer, “Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs,” Opt. Express 17(8), 6465–6475 (2009).
[CrossRef] [PubMed]

M.-K. Seo, J. H. Kang, M.-K. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, H.-G. Park, and Y.-H. Lee, “Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition,” Opt. Express 17(8), 6790–6798 (2009).
[CrossRef] [PubMed]

J.-Y. Kim, M.-K. Kim, M.-K. Seo, S.-H. Kwon, J.-H. Shin, and Y.-H. Lee, “Two-dimensionally relocatable microfiber-coupled photonic crystal resonator,” Opt. Express 17(15), 13009–13016 (2009).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, A. Rahmani, M. J. Steel, and C. Martijn de Sterke, “Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors,” Opt. Express 17(17), 14552–14557 (2009).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (1)

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[CrossRef]

Sensors (Basel Switzerland) (1)

P. Skafte-Pedersen, P. S. Nunes, S. S. Xiao, and N. A. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors (Basel Switzerland) 9(11), 8382–8390 (2009).
[CrossRef]

Other (1)

S. Tomljenovic-Hanic and C. M. de Sterke, “High-Q cavity design in photonic crystal heterostructures,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technol., OSA Technical Digest, JTuA125 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The potential well induced by (a) a positive refractive index change and (b) a negative refractive index change; the dotted lines represent the frequencies of the localized modes considered here; the solid horizontal lines represent the air and dielectric band-edge respectively.

Fig. 2
Fig. 2

Quality factor (squares) and resonant frequency (crosses) as a function of the refractive index change for the (a) dielectric and (b) air band-edge mode. The horizontal solid lines represent the band-edges. The cavity width is fixed at m = 6.

Fig. 3
Fig. 3

One of the major electric field components, Ex , in the plane for the dielectric band-edge mode (a) with the larger domain, and (b) magnified in the centre of the slab, (c) the Fourier transform of the field; (d) to (f) similar, but for the air band-edge mode. For both cavities m = 6 periods and Δn = 0.1

Fig. 4
Fig. 4

Sensitivity of the air band-edge mode cavity, Δn = 0.12, m = 6 for gas sensing (crosses) and liquid-based sensing (squares) as a function of the refractive index change induced by the sample, Δns . The solid horizontal line represents the detection limit S = 0.5.

Metrics