Abstract

Few-mode fibers (FMFs) are used for the first time to transmit over 5000 km. Ten WDM channels with 50GHz channel spacing at 112 Gb/s per channel using PDM-QPSK are launched into the fundamental mode of the FMFs by splicing single-mode fibers directly to the FMFs. Even though few-mode fibers can support an additional spatial mode LP11 at 1550 nm, the signal remains in the fundamental mode and does not experience mode coupling throughout fiber transmission. After each span the signal is collected by a second single-mode fiber which is also spliced to the FMF. Span loss is compensated by single-mode EDFAs before it is launched to the next FMF span. The lack of mode coupling ensures that the signal does not suffer any impairments that may result from differential mode delay or excess loss. Therefore the FMFs used in this “single-mode operation” have the same bandwidth as single-mode fibers. Experimental results verified that FMFs have the significant advantage of large core size which reduces the nonlinear impairments suffered by the signal. It is shown that FMFs with an effective area of 130 μm2, have an optimum launch power 2 dB higher compared to standard single-mode fibers and as a result a 1.1 dB improvement in the Q-factor is obtained after 3000 km.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Chraplyvy, “Limitations on Lightwave Communications Imposed by Optical-Fiber Nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
    [CrossRef]
  2. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [CrossRef]
  3. A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, and R. M. Derosier, “8 x 10 Gb/s Transmission Through 280 km of Dispersion-Managed Fiber,” IEEE Photon. Technol. Lett. 5(10), 1233–1235 (1993).
    [CrossRef]
  4. A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, A. Agarwal, S. Banerjee, D. Grosz, S. Hunsche, A. Kung, A. Marhelyuk, D. Maywar, M. Movassaghi, X. Liu, C. Xu, X. Wei, and D. M. Gill, “2.5 tb/s (64x42.7 Gb/s) transmission over 40x100 km NZDSF using RZ-DPSK format and all-raman-amplified spans,” presented at the OFC 2002, PD-FC2.
  5. G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran, and S. Bigo, “Transmission of 40Gb/s QPSK with coherent detection over ultra-long distance improved by nonlinearity mitigation,” Proc. Eur. Conf. Opt. Commun. 2006.
  6. F. Yaman and G. Li, “Nonlinear Impairment Compensation for Polarization-Division Multiplexed WDM Transmission Using Digital Backward Propagation,” IEEE Photon. J. 1(2), 144–152 (2009).
    [CrossRef]
  7. P. Nouchi, P. Sansonetti, and S. Landais, G. Barre, C. Brehni, J. Y. Boniort, B. Perrin, J. J. Girard, and J. Auge, “Low-loss single-mode fiber with high nonlinear effective area,” OFC 1995 ThH2.
  8. H. T. Hattori and A. Safaai-Jazi, “Fiber designs with significantly reduced nonlinearity for very long distance transmission,” Appl. Opt. 37(15), 3190–3197 (1998).
    [CrossRef]
  9. X. Zhou, J. Yu, M. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P. I. Borel, D. W. Peckham, and R. Lingle, ”64-Tb/s (640x107-Gb/s) PDM-36QAM transmission over 320 km using both pre- and post-transmission digital equalization,” OFC 2010 PDPB9.
  10. J.-X. Cai, Y. Cai, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Philipetskii, and N. S. And, Bergano, “Transmission of 96x100G pre-filtered PDM-RZ-QPSK channels with 300% spectral efficiency over 10,608 km and 400% spectral efficiency over 4,368 km,” OFC 2010 PDPB10.
  11. M.-J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of effective area for single-mode operation in step-index large mode area laser fibers,” J. Lightwave Technol. 27(15), 3010–3016 (2009).
    [CrossRef]
  12. F. Yaman, N. Bai, B. Zhu, T. Wang, and G. Li, “Long distance transmission in few-mode fibers,” Opt. Express 18(12), 13250–13257 (2010).
    [CrossRef] [PubMed]
  13. R. Olshansky, “Mode Coupling Effects in Graded-index Optical Fibers,” Appl. Opt. 14(4), 935–945 (1975).
    [PubMed]
  14. D. Donlagic, “A low bending loss multimode fiber transmission system,” Opt. Express 17(24), 22081–22095 (2009).
    [CrossRef] [PubMed]

2010 (2)

2009 (3)

1998 (1)

1993 (1)

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, and R. M. Derosier, “8 x 10 Gb/s Transmission Through 280 km of Dispersion-Managed Fiber,” IEEE Photon. Technol. Lett. 5(10), 1233–1235 (1993).
[CrossRef]

1990 (1)

A. R. Chraplyvy, “Limitations on Lightwave Communications Imposed by Optical-Fiber Nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
[CrossRef]

1975 (1)

Bai, N.

Chen, X.

Chraplyvy, A. R.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, and R. M. Derosier, “8 x 10 Gb/s Transmission Through 280 km of Dispersion-Managed Fiber,” IEEE Photon. Technol. Lett. 5(10), 1233–1235 (1993).
[CrossRef]

A. R. Chraplyvy, “Limitations on Lightwave Communications Imposed by Optical-Fiber Nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
[CrossRef]

Derosier, R. M.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, and R. M. Derosier, “8 x 10 Gb/s Transmission Through 280 km of Dispersion-Managed Fiber,” IEEE Photon. Technol. Lett. 5(10), 1233–1235 (1993).
[CrossRef]

Donlagic, D.

Essiambre, R.-J.

Foschini, G. J.

Gnauck, A. H.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, and R. M. Derosier, “8 x 10 Gb/s Transmission Through 280 km of Dispersion-Managed Fiber,” IEEE Photon. Technol. Lett. 5(10), 1233–1235 (1993).
[CrossRef]

Goebel, B.

Gray, S.

Hattori, H. T.

Kramer, G.

Li, G.

F. Yaman, N. Bai, B. Zhu, T. Wang, and G. Li, “Long distance transmission in few-mode fibers,” Opt. Express 18(12), 13250–13257 (2010).
[CrossRef] [PubMed]

F. Yaman and G. Li, “Nonlinear Impairment Compensation for Polarization-Division Multiplexed WDM Transmission Using Digital Backward Propagation,” IEEE Photon. J. 1(2), 144–152 (2009).
[CrossRef]

Li, M.-J.

Liu, A.

Olshansky, R.

Safaai-Jazi, A.

Tkach, R. W.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, and R. M. Derosier, “8 x 10 Gb/s Transmission Through 280 km of Dispersion-Managed Fiber,” IEEE Photon. Technol. Lett. 5(10), 1233–1235 (1993).
[CrossRef]

Walton, D. T.

Wang, J.

Wang, T.

Winzer, P. J.

Yaman, F.

F. Yaman, N. Bai, B. Zhu, T. Wang, and G. Li, “Long distance transmission in few-mode fibers,” Opt. Express 18(12), 13250–13257 (2010).
[CrossRef] [PubMed]

F. Yaman and G. Li, “Nonlinear Impairment Compensation for Polarization-Division Multiplexed WDM Transmission Using Digital Backward Propagation,” IEEE Photon. J. 1(2), 144–152 (2009).
[CrossRef]

Zenteno, L. A.

Zhu, B.

Appl. Opt. (2)

IEEE Photon. J. (1)

F. Yaman and G. Li, “Nonlinear Impairment Compensation for Polarization-Division Multiplexed WDM Transmission Using Digital Backward Propagation,” IEEE Photon. J. 1(2), 144–152 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, and R. M. Derosier, “8 x 10 Gb/s Transmission Through 280 km of Dispersion-Managed Fiber,” IEEE Photon. Technol. Lett. 5(10), 1233–1235 (1993).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (2)

Other (5)

A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, A. Agarwal, S. Banerjee, D. Grosz, S. Hunsche, A. Kung, A. Marhelyuk, D. Maywar, M. Movassaghi, X. Liu, C. Xu, X. Wei, and D. M. Gill, “2.5 tb/s (64x42.7 Gb/s) transmission over 40x100 km NZDSF using RZ-DPSK format and all-raman-amplified spans,” presented at the OFC 2002, PD-FC2.

G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran, and S. Bigo, “Transmission of 40Gb/s QPSK with coherent detection over ultra-long distance improved by nonlinearity mitigation,” Proc. Eur. Conf. Opt. Commun. 2006.

P. Nouchi, P. Sansonetti, and S. Landais, G. Barre, C. Brehni, J. Y. Boniort, B. Perrin, J. J. Girard, and J. Auge, “Low-loss single-mode fiber with high nonlinear effective area,” OFC 1995 ThH2.

X. Zhou, J. Yu, M. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P. I. Borel, D. W. Peckham, and R. Lingle, ”64-Tb/s (640x107-Gb/s) PDM-36QAM transmission over 320 km using both pre- and post-transmission digital equalization,” OFC 2010 PDPB9.

J.-X. Cai, Y. Cai, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Philipetskii, and N. S. And, Bergano, “Transmission of 96x100G pre-filtered PDM-RZ-QPSK channels with 300% spectral efficiency over 10,608 km and 400% spectral efficiency over 4,368 km,” OFC 2010 PDPB10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup used for measuring the phase delay between the two spatial modes supported by the few-mode fiber. PC: polarization controller, OSA: optical spectrum analyzer.

Fig. 2
Fig. 2

Optical spectra of the ASE source before the FMF fiber (red, dashed) and after passing through the FMF (blue, solid).

Fig. 3
Fig. 3

Setup for 10x112 Gb/s PDM-QPSK-WDM transmission experiment. DFB: distributed feedback laser, PMC: polarization maintaining coupler, PBC: polarization beam combiner, IL: interleaver, SW: optical switch, FMF: few-mode fiber, WSS: wavelength selective switch, PM-EDFA: polarization maintaining erbium doped fiber amplifier, LO: local oscillator, PD: photodiode.

Fig. 4
Fig. 4

The Q values of the 5 even channels are plotted for both X (stars) and Y polarizations (circles) after 5032 km transmission. The Q values remain above 10 dB for all channels. The constellation diagrams for two Q values are shown in the inset.

Fig. 5
Fig. 5

Q-factor for the center channel as a function of launch power per channel after 3100 km (21 loops) for FMFs (blue, stars) and after 3040 km (19 loops) for single-mode fibers (red, circles). The constellation diagrams for the X-polarization at the optimal power for each case are also shown in the insets.

Metrics