Abstract

The interaction dynamics of X-waves in an AlGaAs waveguide array is theoretically considered. The nonlinear discrete diffraction dynamics of a waveguide array mediates the generation of spatio-temporal X-waves from pulsed initial conditions. The interactions between co-propagating and counter-propagating X-waves are studied. For the co-propagating case, the initial phase relation between the X-waves determine the attractive or repulsive behavior of the X-wave interaction. For the counter-propagating case, the collisions between X-waves generate a nonlinear phase-shift. These dynamics show that X-waves interact in a manner similar to solitons.

© 2010 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Waveguide properties of the asymmetric collision between two bright spatial solitons in Kerr media

D. Ramírez Martínez, M. M. Méndez Otero, M. L. Arroyo Carrasco, and M. D. Iturbe Castillo
Opt. Express 20(24) 27411-27418 (2012)

Mode-locked X-wave lasers

J. Nathan Kutz, Claudio Conti, and Stefano Trillo
Opt. Express 15(24) 16022-16028 (2007)

Interaction of Bragg solitons in fiber gratings

N. M. Litchinitser, B. J. Eggleton, C. M. de Sterke, A. B. Aceves, and Govind P. Agrawal
J. Opt. Soc. Am. B 16(1) 18-23 (1999)

References

  • View by:
  • |
  • |
  • |

  1. J. Lu and J. F. Greenleaf, “Nondiffracting X waves-exact solutions to free-space scalar waveequation and their finite aperture realizations,” IEEE Trans. Ultrason. Ferrelec. Freq. contr. 39, 19–31 (1992);
    [Crossref]
  2. E. Recami, M. Zamboni-Rached, and H. E. Hernandez-Figueroa, Localized waves (Wiley, 2007).
  3. C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, “Nonlinear Electromagnetic X-waves,” Phys. Rev. Lett. 90, 170406 (2003);
    [Crossref] [PubMed]
  4. P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously Generated X-shaped Light Bullets,” Phys. Rev. Lett. 91, 093904 (2003).
    [Crossref] [PubMed]
  5. M. Kolesik, E. M. Wright, and J. V. Moloney, “Dynamic nonlinear X-waves for femtosecond pulse propagation in water,” Phys. Rev. Lett. 92253901 (2004).
    [Crossref] [PubMed]
  6. D. Faccio, M. Porras, A. Dubietis, F. Bragheri, A. Couairon, and P. Di Trapani, “Conical emission, pulse splitting and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses,” Phys. Rev. Lett. 96, 193901 (2006).
    [Crossref] [PubMed]
  7. C. Conti and S. Trillo, “Nonspreading wave packets in three dimensions formed by an ultracold Bose gas in an optical lattice,” Phys. Rev. Lett. 92, 120404 (2004).
    [Crossref] [PubMed]
  8. S. Longhi and D. Janner, “X-shaped waves in photonic crystals,” Phys. Rev. B 70, 235123 (2004).
    [Crossref]
  9. Y. Lahini, E. Frumker, Y. Silberberg, S. Droulias, K. Hizanidis, and D. N. Christodoulides, “Discrete X-Wave Formation in Nonlinear Waveguide Arrays,” Phys. Rev. Lett. 98, 023901 (2007);
    [Crossref] [PubMed]
  10. D. Hudson, K. Shish, T. R. Schibli, J. N. Kutz, D. N. Christodoulides, R. Morandotti, and S. T. Cundiff, “Nonlinear femtosecond pulse reshaping in waveguide arrays,” Opt. Lett. 33, 1440–1442 (2008).
    [Crossref] [PubMed]
  11. J. N. Kutz, C. Conti, and S. Trillo, “Mode-locked X-wave lasers,” Opt. Express 15, 16022–16028 (2007)
    [Crossref] [PubMed]
  12. K. Staliunas and M. Tlidi, “Hyperbolic Transverse Patterns in Nonlinear Optical Resonators,” Phys. Rev. Lett. 94, 133902 (2005);
    [Crossref] [PubMed]
  13. L. Mollenauer and J. Gordon, Solitons in Optical Fibers: Fundamentals and Applications, (Springer, 2006);
  14. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete Spatial Optical Solitons in Waveguide Arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998);
    [Crossref]

2008 (1)

2007 (2)

J. N. Kutz, C. Conti, and S. Trillo, “Mode-locked X-wave lasers,” Opt. Express 15, 16022–16028 (2007)
[Crossref] [PubMed]

Y. Lahini, E. Frumker, Y. Silberberg, S. Droulias, K. Hizanidis, and D. N. Christodoulides, “Discrete X-Wave Formation in Nonlinear Waveguide Arrays,” Phys. Rev. Lett. 98, 023901 (2007);
[Crossref] [PubMed]

2006 (1)

D. Faccio, M. Porras, A. Dubietis, F. Bragheri, A. Couairon, and P. Di Trapani, “Conical emission, pulse splitting and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses,” Phys. Rev. Lett. 96, 193901 (2006).
[Crossref] [PubMed]

2005 (1)

K. Staliunas and M. Tlidi, “Hyperbolic Transverse Patterns in Nonlinear Optical Resonators,” Phys. Rev. Lett. 94, 133902 (2005);
[Crossref] [PubMed]

2004 (3)

M. Kolesik, E. M. Wright, and J. V. Moloney, “Dynamic nonlinear X-waves for femtosecond pulse propagation in water,” Phys. Rev. Lett. 92253901 (2004).
[Crossref] [PubMed]

C. Conti and S. Trillo, “Nonspreading wave packets in three dimensions formed by an ultracold Bose gas in an optical lattice,” Phys. Rev. Lett. 92, 120404 (2004).
[Crossref] [PubMed]

S. Longhi and D. Janner, “X-shaped waves in photonic crystals,” Phys. Rev. B 70, 235123 (2004).
[Crossref]

2003 (2)

C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, “Nonlinear Electromagnetic X-waves,” Phys. Rev. Lett. 90, 170406 (2003);
[Crossref] [PubMed]

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously Generated X-shaped Light Bullets,” Phys. Rev. Lett. 91, 093904 (2003).
[Crossref] [PubMed]

1998 (1)

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete Spatial Optical Solitons in Waveguide Arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998);
[Crossref]

1992 (1)

J. Lu and J. F. Greenleaf, “Nondiffracting X waves-exact solutions to free-space scalar waveequation and their finite aperture realizations,” IEEE Trans. Ultrason. Ferrelec. Freq. contr. 39, 19–31 (1992);
[Crossref]

Aitchison, J. S.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete Spatial Optical Solitons in Waveguide Arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998);
[Crossref]

Boyd, A. R.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete Spatial Optical Solitons in Waveguide Arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998);
[Crossref]

Bragheri, F.

D. Faccio, M. Porras, A. Dubietis, F. Bragheri, A. Couairon, and P. Di Trapani, “Conical emission, pulse splitting and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses,” Phys. Rev. Lett. 96, 193901 (2006).
[Crossref] [PubMed]

Christodoulides, D. N.

D. Hudson, K. Shish, T. R. Schibli, J. N. Kutz, D. N. Christodoulides, R. Morandotti, and S. T. Cundiff, “Nonlinear femtosecond pulse reshaping in waveguide arrays,” Opt. Lett. 33, 1440–1442 (2008).
[Crossref] [PubMed]

Y. Lahini, E. Frumker, Y. Silberberg, S. Droulias, K. Hizanidis, and D. N. Christodoulides, “Discrete X-Wave Formation in Nonlinear Waveguide Arrays,” Phys. Rev. Lett. 98, 023901 (2007);
[Crossref] [PubMed]

Conti, C.

J. N. Kutz, C. Conti, and S. Trillo, “Mode-locked X-wave lasers,” Opt. Express 15, 16022–16028 (2007)
[Crossref] [PubMed]

C. Conti and S. Trillo, “Nonspreading wave packets in three dimensions formed by an ultracold Bose gas in an optical lattice,” Phys. Rev. Lett. 92, 120404 (2004).
[Crossref] [PubMed]

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously Generated X-shaped Light Bullets,” Phys. Rev. Lett. 91, 093904 (2003).
[Crossref] [PubMed]

C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, “Nonlinear Electromagnetic X-waves,” Phys. Rev. Lett. 90, 170406 (2003);
[Crossref] [PubMed]

Couairon, A.

D. Faccio, M. Porras, A. Dubietis, F. Bragheri, A. Couairon, and P. Di Trapani, “Conical emission, pulse splitting and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses,” Phys. Rev. Lett. 96, 193901 (2006).
[Crossref] [PubMed]

Cundiff, S. T.

Di Trapani, P.

D. Faccio, M. Porras, A. Dubietis, F. Bragheri, A. Couairon, and P. Di Trapani, “Conical emission, pulse splitting and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses,” Phys. Rev. Lett. 96, 193901 (2006).
[Crossref] [PubMed]

C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, “Nonlinear Electromagnetic X-waves,” Phys. Rev. Lett. 90, 170406 (2003);
[Crossref] [PubMed]

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously Generated X-shaped Light Bullets,” Phys. Rev. Lett. 91, 093904 (2003).
[Crossref] [PubMed]

Droulias, S.

Y. Lahini, E. Frumker, Y. Silberberg, S. Droulias, K. Hizanidis, and D. N. Christodoulides, “Discrete X-Wave Formation in Nonlinear Waveguide Arrays,” Phys. Rev. Lett. 98, 023901 (2007);
[Crossref] [PubMed]

Dubietis, A.

D. Faccio, M. Porras, A. Dubietis, F. Bragheri, A. Couairon, and P. Di Trapani, “Conical emission, pulse splitting and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses,” Phys. Rev. Lett. 96, 193901 (2006).
[Crossref] [PubMed]

Eisenberg, H. S.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete Spatial Optical Solitons in Waveguide Arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998);
[Crossref]

Faccio, D.

D. Faccio, M. Porras, A. Dubietis, F. Bragheri, A. Couairon, and P. Di Trapani, “Conical emission, pulse splitting and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses,” Phys. Rev. Lett. 96, 193901 (2006).
[Crossref] [PubMed]

Frumker, E.

Y. Lahini, E. Frumker, Y. Silberberg, S. Droulias, K. Hizanidis, and D. N. Christodoulides, “Discrete X-Wave Formation in Nonlinear Waveguide Arrays,” Phys. Rev. Lett. 98, 023901 (2007);
[Crossref] [PubMed]

Gordon, J.

L. Mollenauer and J. Gordon, Solitons in Optical Fibers: Fundamentals and Applications, (Springer, 2006);

Greenleaf, J. F.

J. Lu and J. F. Greenleaf, “Nondiffracting X waves-exact solutions to free-space scalar waveequation and their finite aperture realizations,” IEEE Trans. Ultrason. Ferrelec. Freq. contr. 39, 19–31 (1992);
[Crossref]

Hernandez-Figueroa, H. E.

E. Recami, M. Zamboni-Rached, and H. E. Hernandez-Figueroa, Localized waves (Wiley, 2007).

Hizanidis, K.

Y. Lahini, E. Frumker, Y. Silberberg, S. Droulias, K. Hizanidis, and D. N. Christodoulides, “Discrete X-Wave Formation in Nonlinear Waveguide Arrays,” Phys. Rev. Lett. 98, 023901 (2007);
[Crossref] [PubMed]

Hudson, D.

Janner, D.

S. Longhi and D. Janner, “X-shaped waves in photonic crystals,” Phys. Rev. B 70, 235123 (2004).
[Crossref]

Jedrkiewicz, O.

C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, “Nonlinear Electromagnetic X-waves,” Phys. Rev. Lett. 90, 170406 (2003);
[Crossref] [PubMed]

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously Generated X-shaped Light Bullets,” Phys. Rev. Lett. 91, 093904 (2003).
[Crossref] [PubMed]

Kolesik, M.

M. Kolesik, E. M. Wright, and J. V. Moloney, “Dynamic nonlinear X-waves for femtosecond pulse propagation in water,” Phys. Rev. Lett. 92253901 (2004).
[Crossref] [PubMed]

Kutz, J. N.

Lahini, Y.

Y. Lahini, E. Frumker, Y. Silberberg, S. Droulias, K. Hizanidis, and D. N. Christodoulides, “Discrete X-Wave Formation in Nonlinear Waveguide Arrays,” Phys. Rev. Lett. 98, 023901 (2007);
[Crossref] [PubMed]

Longhi, S.

S. Longhi and D. Janner, “X-shaped waves in photonic crystals,” Phys. Rev. B 70, 235123 (2004).
[Crossref]

Lu, J.

J. Lu and J. F. Greenleaf, “Nondiffracting X waves-exact solutions to free-space scalar waveequation and their finite aperture realizations,” IEEE Trans. Ultrason. Ferrelec. Freq. contr. 39, 19–31 (1992);
[Crossref]

Mollenauer, L.

L. Mollenauer and J. Gordon, Solitons in Optical Fibers: Fundamentals and Applications, (Springer, 2006);

Moloney, J. V.

M. Kolesik, E. M. Wright, and J. V. Moloney, “Dynamic nonlinear X-waves for femtosecond pulse propagation in water,” Phys. Rev. Lett. 92253901 (2004).
[Crossref] [PubMed]

Morandotti, R.

D. Hudson, K. Shish, T. R. Schibli, J. N. Kutz, D. N. Christodoulides, R. Morandotti, and S. T. Cundiff, “Nonlinear femtosecond pulse reshaping in waveguide arrays,” Opt. Lett. 33, 1440–1442 (2008).
[Crossref] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete Spatial Optical Solitons in Waveguide Arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998);
[Crossref]

Piskarskas, A.

C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, “Nonlinear Electromagnetic X-waves,” Phys. Rev. Lett. 90, 170406 (2003);
[Crossref] [PubMed]

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously Generated X-shaped Light Bullets,” Phys. Rev. Lett. 91, 093904 (2003).
[Crossref] [PubMed]

Porras, M.

D. Faccio, M. Porras, A. Dubietis, F. Bragheri, A. Couairon, and P. Di Trapani, “Conical emission, pulse splitting and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses,” Phys. Rev. Lett. 96, 193901 (2006).
[Crossref] [PubMed]

Recami, E.

E. Recami, M. Zamboni-Rached, and H. E. Hernandez-Figueroa, Localized waves (Wiley, 2007).

Schibli, T. R.

Shish, K.

Silberberg, Y.

Y. Lahini, E. Frumker, Y. Silberberg, S. Droulias, K. Hizanidis, and D. N. Christodoulides, “Discrete X-Wave Formation in Nonlinear Waveguide Arrays,” Phys. Rev. Lett. 98, 023901 (2007);
[Crossref] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete Spatial Optical Solitons in Waveguide Arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998);
[Crossref]

Staliunas, K.

K. Staliunas and M. Tlidi, “Hyperbolic Transverse Patterns in Nonlinear Optical Resonators,” Phys. Rev. Lett. 94, 133902 (2005);
[Crossref] [PubMed]

Tlidi, M.

K. Staliunas and M. Tlidi, “Hyperbolic Transverse Patterns in Nonlinear Optical Resonators,” Phys. Rev. Lett. 94, 133902 (2005);
[Crossref] [PubMed]

Trillo, S.

J. N. Kutz, C. Conti, and S. Trillo, “Mode-locked X-wave lasers,” Opt. Express 15, 16022–16028 (2007)
[Crossref] [PubMed]

C. Conti and S. Trillo, “Nonspreading wave packets in three dimensions formed by an ultracold Bose gas in an optical lattice,” Phys. Rev. Lett. 92, 120404 (2004).
[Crossref] [PubMed]

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously Generated X-shaped Light Bullets,” Phys. Rev. Lett. 91, 093904 (2003).
[Crossref] [PubMed]

C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, “Nonlinear Electromagnetic X-waves,” Phys. Rev. Lett. 90, 170406 (2003);
[Crossref] [PubMed]

Trull, J.

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously Generated X-shaped Light Bullets,” Phys. Rev. Lett. 91, 093904 (2003).
[Crossref] [PubMed]

C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, “Nonlinear Electromagnetic X-waves,” Phys. Rev. Lett. 90, 170406 (2003);
[Crossref] [PubMed]

Valiulis, G.

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously Generated X-shaped Light Bullets,” Phys. Rev. Lett. 91, 093904 (2003).
[Crossref] [PubMed]

C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, “Nonlinear Electromagnetic X-waves,” Phys. Rev. Lett. 90, 170406 (2003);
[Crossref] [PubMed]

Wright, E. M.

M. Kolesik, E. M. Wright, and J. V. Moloney, “Dynamic nonlinear X-waves for femtosecond pulse propagation in water,” Phys. Rev. Lett. 92253901 (2004).
[Crossref] [PubMed]

Zamboni-Rached, M.

E. Recami, M. Zamboni-Rached, and H. E. Hernandez-Figueroa, Localized waves (Wiley, 2007).

IEEE Trans. Ultrason. Ferrelec. Freq. contr. (1)

J. Lu and J. F. Greenleaf, “Nondiffracting X waves-exact solutions to free-space scalar waveequation and their finite aperture realizations,” IEEE Trans. Ultrason. Ferrelec. Freq. contr. 39, 19–31 (1992);
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

S. Longhi and D. Janner, “X-shaped waves in photonic crystals,” Phys. Rev. B 70, 235123 (2004).
[Crossref]

Phys. Rev. Lett. (8)

Y. Lahini, E. Frumker, Y. Silberberg, S. Droulias, K. Hizanidis, and D. N. Christodoulides, “Discrete X-Wave Formation in Nonlinear Waveguide Arrays,” Phys. Rev. Lett. 98, 023901 (2007);
[Crossref] [PubMed]

C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, “Nonlinear Electromagnetic X-waves,” Phys. Rev. Lett. 90, 170406 (2003);
[Crossref] [PubMed]

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously Generated X-shaped Light Bullets,” Phys. Rev. Lett. 91, 093904 (2003).
[Crossref] [PubMed]

M. Kolesik, E. M. Wright, and J. V. Moloney, “Dynamic nonlinear X-waves for femtosecond pulse propagation in water,” Phys. Rev. Lett. 92253901 (2004).
[Crossref] [PubMed]

D. Faccio, M. Porras, A. Dubietis, F. Bragheri, A. Couairon, and P. Di Trapani, “Conical emission, pulse splitting and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses,” Phys. Rev. Lett. 96, 193901 (2006).
[Crossref] [PubMed]

C. Conti and S. Trillo, “Nonspreading wave packets in three dimensions formed by an ultracold Bose gas in an optical lattice,” Phys. Rev. Lett. 92, 120404 (2004).
[Crossref] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete Spatial Optical Solitons in Waveguide Arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998);
[Crossref]

K. Staliunas and M. Tlidi, “Hyperbolic Transverse Patterns in Nonlinear Optical Resonators,” Phys. Rev. Lett. 94, 133902 (2005);
[Crossref] [PubMed]

Other (2)

L. Mollenauer and J. Gordon, Solitons in Optical Fibers: Fundamentals and Applications, (Springer, 2006);

E. Recami, M. Zamboni-Rached, and H. E. Hernandez-Figueroa, Localized waves (Wiley, 2007).

Supplementary Material (4)

» Media 1: MOV (2284 KB)     
» Media 2: MOV (2388 KB)     
» Media 3: MOV (2223 KB)     
» Media 4: MOV (2484 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Pseudo-color plot of in-phase pulses interacting. The final result is a pair of closely-spaced but distinct X-waves. The white and green dotted lines indicate the center of the X-wave at Z = 0 in the 0th and 1st waveguide respectively. The white and green dashed lines represent the center of the X-wave at the present value of Z. Notice that the final separation is slightly larger than the initial separation of the pulses. ( Media 1)

Fig. 2
Fig. 2

Pseudo-color plot of out of-phase pulses interacting. In this case, the X-waves attract and form a pair of X-waves with a negligible delay in time. The white and green dotted lines denote the center of X-wave in the 0th and 1st waveguides at Z = 0, and the dashed lines represent the center of the X-wave at the present value of Z. ( Media 2)

Fig. 3
Fig. 3

Plot of the X-wave separation as a function of phase-difference for three different initial separations. The dashed lines show the initial separation and the solid lines of the same color show the final X-wave separation. Regardless of initial separation, X-waves with small phase-differences repel and X-waves with phase-differences near π attract.

Fig. 4
Fig. 4

Plot of the final X-wave separation for a pair of in-phase X-waves, shown in black, and π out-of-phase X-waves, shown in blue with an initial separation of ΔT = 1. For sufficiently high initial powers, the in-phase solutions repel and the out-of-phase solutions attract.

Fig. 5
Fig. 5

Pseudo-color plot of two unequally sized X-waves with Δθ = 0. The X-wave in waveguide 0 has amplitude 2.0 while the pulse in waveguide 1 has amplitude 1. The larger pulse dominates the dynamics and the attracts the smaller pulse. ( Media 3)

Fig. 6
Fig. 6

Pseudo-color plot of the collision of counter-propagating X-waves. The top series of plots shows the propagation of both the forward and backward X-waves at three snapshots in time. The bottom series of plots follows the propagation of the forward X-wave as it interacts with the backward X-wave. ( Media 4)

Fig. 7
Fig. 7

Plot of the phase shift in radians and time delay of the interacting X-waves. The magnitude of the phase shift is dependent upon the size of the X-wave, but the time-delay remains zero for all initial conditions.

Fig. 8
Fig. 8

Plot the phase shift of counter-propagating X-waves as a function of initial separation. The different colors correspond to initial conditions with η +, η = 1.50, 1.25, 1.00, 0.75, and 0.50 for blue, green, red, teal, and purple respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

i A n Z + D 2 2 A n T 2 + c ( A n 1 + A n + 1 ) + γ | A n | 2 A n = 0 ,
A 0 ( 0 , T ) = η 0 sech ( T ) and A 1 ( 0 , T ) = η 1 sech ( T + Δ T ) × exp ( i Δ θ ) .
i A n Z + i σ d A n d T + D 2 2 A n T 2 + γ ( | A n | 2 + 2 | B n | 2 ) A n + c ( A n 1 + A n + 1 ) = 0
i B n Z i σ d B n d T + D 2 2 A n T 2 + γ ( 2 | A n | 2 + | B n | 2 ) B n + c ( B n 1 + B n + 1 ) = 0
A 0 ( Z , 0 ) = η + sech ( Z + Δ Z ) and B 0 ( Z , 0 ) = η sech ( Z Δ Z ) .

Metrics