Abstract

We propose and analyze three electrically-pumped nanowire single-photon source structures, which achieve output efficiencies of more than 80%. These structures are based on a quantum dot embedded in a photonic nanowire with carefully tailored ends and optimized contact electrodes. Contrary to conventional cavity-based sources, this non-resonant approach provides broadband spontaneous emission control and features an improved fabrication tolerance towards surface roughness and imperfections. Using an element-splitting approach, we analyze the various building blocks of the designs with respect to realistic variations of the experimental fabrication parameters.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
    [CrossRef]
  2. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
    [CrossRef]
  3. T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
    [CrossRef]
  4. T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
    [CrossRef]
  5. A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
    [CrossRef]
  6. C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
    [CrossRef] [PubMed]
  7. T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
    [CrossRef]
  8. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
    [CrossRef]
  9. E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79(18), 2865–2867 (2001).
    [CrossRef]
  10. M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
    [CrossRef] [PubMed]
  11. S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
    [CrossRef]
  12. W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
    [CrossRef] [PubMed]
  13. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  14. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
    [CrossRef] [PubMed]
  15. E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar,” Physica E 13(2-4), 418–422 (2002).
    [CrossRef]
  16. W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
    [CrossRef]
  17. A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
    [CrossRef]
  18. M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
    [CrossRef]
  19. A. Auffèves, J. M. Gérard, and J. P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A 79(5), 053838 (2009).
    [CrossRef]
  20. U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
    [CrossRef]
  21. J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995).
    [CrossRef] [PubMed]
  22. G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99(2), 023902 (2007).
    [CrossRef] [PubMed]
  23. T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
    [CrossRef] [PubMed]
  24. Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, “Broadband enhancement of light emission in silicon slot waveguides,” Opt. Express 17(9), 7479–7490 (2009).
    [CrossRef] [PubMed]
  25. V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B 75(20), 205437 (2007).
    [CrossRef]
  26. I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
    [CrossRef] [PubMed]
  27. A. V. Maslov, M. I. Bakunov, and C. Z. Ning, “Distribution of optical emission between guided modes and free space in a semiconductor nanowire,” J. Appl. Phys. 99(2), 024314 (2006).
    [CrossRef]
  28. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
    [CrossRef]
  29. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
    [CrossRef] [PubMed]
  30. H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46(1), 250–257 (1975).
    [CrossRef]
  31. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
    [CrossRef]
  32. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–20 (1983).
    [CrossRef] [PubMed]
  33. C. Coutal, A. Azéma, and J.-C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation,” Thin Solid Films 288(1-2), 248–253 (1996).
    [CrossRef]
  34. T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/Phenanthrene-Derivative Host-Guest Systems: Rheological, Optical and Thermal Properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
    [CrossRef]
  35. T. Bååk, “Silicon oxynitride; a material for GRIN optics,” Appl. Opt. 21(6), 1069–1072 (1982).
    [CrossRef] [PubMed]
  36. Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. (France) 32(2-3), 151–154 (2007).
  37. I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008).
    [CrossRef] [PubMed]
  38. N. Gregersen, T. R. Nielsen, J. Claudon, J. M. Gérard, and J. Mørk, “Controlling the emission profile of a nanowire with a conical taper,” Opt. Lett. 33(15), 1693–1695 (2008).
    [CrossRef] [PubMed]
  39. C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
    [CrossRef]
  40. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001).
    [CrossRef]
  41. N. Gregersen and J. Mørk, “An Improved Perfectly Matched Layer for the Eigenmode Expansion Technique,” Opt. Quantum Electron. 40(11-12), 957–966 (2008).
    [CrossRef]
  42. N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007).
    [CrossRef]
  43. M. Karl, B. Kettner, S. Burger, F. Schmidt, H. Kalt, and M. Hetterich, “Dependencies of micro-pillar cavity quality factors calculated with finite element methods,” Opt. Express 17(2), 1144–1158 (2009).
    [CrossRef] [PubMed]
  44. Y. Zhang and M. Lončar, “Submicrometer diameter micropillar cavities with high quality factor and ultrasmall mode volume,” Opt. Lett. 34(7), 902–904 (2009).
    [CrossRef] [PubMed]
  45. D. Englund, H. Altug, and J. Vučković, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
    [CrossRef]
  46. R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008).
    [CrossRef] [PubMed]
  47. A. J. Bennett, R. B. Patel, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Interference of dissimilar photon sources,” Nat. Phys. 5(10), 715–717 (2009).
    [CrossRef]
  48. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
    [CrossRef] [PubMed]
  49. K. Sanaka, A. Pawlis, T. D. Ladd, K. Lischka, and Y. Yamamoto, “Indistinguishable photons from independent semiconductor nanostructures,” Phys. Rev. Lett. 103(5), 053601 (2009).
    [CrossRef] [PubMed]

2010 (4)

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[CrossRef] [PubMed]

2009 (9)

A. J. Bennett, R. B. Patel, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Interference of dissimilar photon sources,” Nat. Phys. 5(10), 715–717 (2009).
[CrossRef]

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

A. Auffèves, J. M. Gérard, and J. P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A 79(5), 053838 (2009).
[CrossRef]

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

K. Sanaka, A. Pawlis, T. D. Ladd, K. Lischka, and Y. Yamamoto, “Indistinguishable photons from independent semiconductor nanostructures,” Phys. Rev. Lett. 103(5), 053601 (2009).
[CrossRef] [PubMed]

M. Karl, B. Kettner, S. Burger, F. Schmidt, H. Kalt, and M. Hetterich, “Dependencies of micro-pillar cavity quality factors calculated with finite element methods,” Opt. Express 17(2), 1144–1158 (2009).
[CrossRef] [PubMed]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
[CrossRef] [PubMed]

Y. Zhang and M. Lončar, “Submicrometer diameter micropillar cavities with high quality factor and ultrasmall mode volume,” Opt. Lett. 34(7), 902–904 (2009).
[CrossRef] [PubMed]

Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, “Broadband enhancement of light emission in silicon slot waveguides,” Opt. Express 17(9), 7479–7490 (2009).
[CrossRef] [PubMed]

2008 (9)

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008).
[CrossRef] [PubMed]

N. Gregersen, T. R. Nielsen, J. Claudon, J. M. Gérard, and J. Mørk, “Controlling the emission profile of a nanowire with a conical taper,” Opt. Lett. 33(15), 1693–1695 (2008).
[CrossRef] [PubMed]

I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008).
[CrossRef] [PubMed]

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
[CrossRef]

N. Gregersen and J. Mørk, “An Improved Perfectly Matched Layer for the Eigenmode Expansion Technique,” Opt. Quantum Electron. 40(11-12), 957–966 (2008).
[CrossRef]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[CrossRef]

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[CrossRef] [PubMed]

2007 (9)

G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99(2), 023902 (2007).
[CrossRef] [PubMed]

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B 75(20), 205437 (2007).
[CrossRef]

T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/Phenanthrene-Derivative Host-Guest Systems: Rheological, Optical and Thermal Properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
[CrossRef]

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007).
[CrossRef]

D. Englund, H. Altug, and J. Vučković, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
[CrossRef]

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
[CrossRef]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[CrossRef] [PubMed]

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. (France) 32(2-3), 151–154 (2007).

2006 (3)

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

A. V. Maslov, M. I. Bakunov, and C. Z. Ning, “Distribution of optical emission between guided modes and free space in a semiconductor nanowire,” J. Appl. Phys. 99(2), 024314 (2006).
[CrossRef]

2004 (1)

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

2002 (4)

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar,” Physica E 13(2-4), 418–422 (2002).
[CrossRef]

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[CrossRef]

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

2001 (2)

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79(18), 2865–2867 (2001).
[CrossRef]

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001).
[CrossRef]

2000 (1)

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[CrossRef]

1998 (1)

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

1996 (1)

C. Coutal, A. Azéma, and J.-C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation,” Thin Solid Films 288(1-2), 248–253 (1996).
[CrossRef]

1995 (1)

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995).
[CrossRef] [PubMed]

1983 (1)

1982 (1)

1975 (1)

H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46(1), 250–257 (1975).
[CrossRef]

Abram, I.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar,” Physica E 13(2-4), 418–422 (2002).
[CrossRef]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79(18), 2865–2867 (2001).
[CrossRef]

Alexander, R. W.

Altug, H.

D. Englund, H. Altug, and J. Vučković, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
[CrossRef]

Arakawa, Y.

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
[CrossRef]

Atkinson, P.

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008).
[CrossRef] [PubMed]

Atwater, H. A.

Auffèves, A.

A. Auffèves, J. M. Gérard, and J. P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A 79(5), 053838 (2009).
[CrossRef]

Azéma, A.

C. Coutal, A. Azéma, and J.-C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation,” Thin Solid Films 288(1-2), 248–253 (1996).
[CrossRef]

Bååk, T.

Babinec, T. M.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[CrossRef] [PubMed]

Badolato, A.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

Baets, R.

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001).
[CrossRef]

Bakarov, A. K.

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

Bakunov, M. I.

A. V. Maslov, M. I. Bakunov, and C. Z. Ning, “Distribution of optical emission between guided modes and free space in a semiconductor nanowire,” J. Appl. Phys. 99(2), 024314 (2006).
[CrossRef]

Barnes, W. L.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[CrossRef]

Bazin, M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Beattie, N. S.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bennett, A. J.

A. J. Bennett, R. B. Patel, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Interference of dissimilar photon sources,” Nat. Phys. 5(10), 715–717 (2009).
[CrossRef]

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008).
[CrossRef] [PubMed]

Beveratos, A.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008).
[CrossRef] [PubMed]

Bi, W. G.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995).
[CrossRef] [PubMed]

Bichler, M.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

Bienstman, P.

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001).
[CrossRef]

Bimberg, D.

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

Björk, G.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[CrossRef]

Bleuse, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Böckler, C.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Böhm, J.

T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/Phenanthrene-Derivative Host-Guest Systems: Rheological, Optical and Thermal Properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
[CrossRef]

Bouwmeester, D.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

Braun, T.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

Briggs, R. M.

Brongersma, M. L.

Burger, S.

Casey, H. C.

H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46(1), 250–257 (1975).
[CrossRef]

Chang, H. S.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

Chang, W. H.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

Chen, W. Y.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

Chu, D. Y.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995).
[CrossRef] [PubMed]

Chyi, J. I.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

Claudon, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
[CrossRef] [PubMed]

I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008).
[CrossRef] [PubMed]

N. Gregersen, T. R. Nielsen, J. Claudon, J. M. Gérard, and J. Mørk, “Controlling the emission profile of a nanowire with a conical taper,” Opt. Lett. 33(15), 1693–1695 (2008).
[CrossRef] [PubMed]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. (France) 32(2-3), 151–154 (2007).

Coldren, L. A.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

Cooper, K.

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008).
[CrossRef] [PubMed]

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

Costard, E.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Coutal, C.

C. Coutal, A. Azéma, and J.-C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation,” Thin Solid Films 288(1-2), 248–253 (1996).
[CrossRef]

Debusmann, R.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Englund, D.

D. Englund, H. Altug, and J. Vučković, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
[CrossRef]

Farrer, I.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

Finley, J.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

Forchel, A.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[CrossRef] [PubMed]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Friedler, I.

Gayral, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Gehrsitz, S.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[CrossRef]

Gérard, J. M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
[CrossRef] [PubMed]

A. Auffèves, J. M. Gérard, and J. P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A 79(5), 053838 (2009).
[CrossRef]

N. Gregersen, T. R. Nielsen, J. Claudon, J. M. Gérard, and J. Mørk, “Controlling the emission profile of a nanowire with a conical taper,” Opt. Lett. 33(15), 1693–1695 (2008).
[CrossRef] [PubMed]

I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008).
[CrossRef] [PubMed]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. (France) 32(2-3), 151–154 (2007).

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar,” Physica E 13(2-4), 418–422 (2002).
[CrossRef]

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[CrossRef]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79(18), 2865–2867 (2001).
[CrossRef]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Götzinger, S.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[CrossRef] [PubMed]

Gourgon, C.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[CrossRef]

Gregersen, N.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

N. Gregersen and J. Mørk, “An Improved Perfectly Matched Layer for the Eigenmode Expansion Technique,” Opt. Quantum Electron. 40(11-12), 957–966 (2008).
[CrossRef]

N. Gregersen, T. R. Nielsen, J. Claudon, J. M. Gérard, and J. Mørk, “Controlling the emission profile of a nanowire with a conical taper,” Opt. Lett. 33(15), 1693–1695 (2008).
[CrossRef] [PubMed]

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007).
[CrossRef]

Grenouillet, L.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Hahner, R.

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. (France) 32(2-3), 151–154 (2007).

Haisler, V. A.

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

Hanemann, T.

T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/Phenanthrene-Derivative Host-Guest Systems: Rheological, Optical and Thermal Properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
[CrossRef]

Hauke, N.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

Hausmann, B. J. M.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[CrossRef] [PubMed]

Haußelt, J.

T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/Phenanthrene-Derivative Host-Guest Systems: Rheological, Optical and Thermal Properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
[CrossRef]

Heindel, T.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

Hemmer, P. R.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[CrossRef] [PubMed]

Hennessy, K. J.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

Herres, N.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[CrossRef]

Hetterich, M.

Hirose, S.

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
[CrossRef]

Ho, S. T.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995).
[CrossRef] [PubMed]

Höfling, S.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Hofmann, C.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Hohenester, U.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

Honnef, K.

T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/Phenanthrene-Derivative Host-Guest Systems: Rheological, Optical and Thermal Properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
[CrossRef]

Hopfer, F.

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

Hsieh, T. P.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

Hsu, T. M.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

Hu, E. L.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

Hughes, S.

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B 75(20), 205437 (2007).
[CrossRef]

Hugonin, J. P.

Imamoglu, A.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

Jaffrennou, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Jonsson, P.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[CrossRef]

Julsgaard, B.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[CrossRef] [PubMed]

Jun, Y. C.

Kalagin, A. K.

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

Kalt, H.

Kamp, M.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[CrossRef] [PubMed]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[CrossRef] [PubMed]

Kaniber, M.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

Kardynal, B. E.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

Karl, M.

Keldysh, L. V.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Kettner, B.

Khan, M.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[CrossRef] [PubMed]

Kida, T.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Kistner, C.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Kristensen, P. T.

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Kwon, S. H.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

Ladd, T. D.

K. Sanaka, A. Pawlis, T. D. Ladd, K. Lischka, and Y. Yamamoto, “Indistinguishable photons from independent semiconductor nanostructures,” Phys. Rev. Lett. 103(5), 053601 (2009).
[CrossRef] [PubMed]

Lalanne, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
[CrossRef] [PubMed]

I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008).
[CrossRef] [PubMed]

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. (France) 32(2-3), 151–154 (2007).

G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99(2), 023902 (2007).
[CrossRef] [PubMed]

Laucht, A.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

Lecamp, G.

G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99(2), 023902 (2007).
[CrossRef] [PubMed]

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. (France) 32(2-3), 151–154 (2007).

Legrand, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Lermer, M.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

Lischka, K.

K. Sanaka, A. Pawlis, T. D. Ladd, K. Lischka, and Y. Yamamoto, “Indistinguishable photons from independent semiconductor nanostructures,” Phys. Rev. Lett. 103(5), 053601 (2009).
[CrossRef] [PubMed]

Lobo, C. J.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

Lochmann, A.

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

Lodahl, P.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[CrossRef] [PubMed]

Löffler, A.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Loncar, M.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[CrossRef] [PubMed]

Y. Zhang and M. Lončar, “Submicrometer diameter micropillar cavities with high quality factor and ultrasmall mode volume,” Opt. Lett. 34(7), 902–904 (2009).
[CrossRef] [PubMed]

Long, L. L.

Lund-Hansen, T.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[CrossRef] [PubMed]

Malik, N. S.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Manga Rao, V. S. C.

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B 75(20), 205437 (2007).
[CrossRef]

Manin, L.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar,” Physica E 13(2-4), 418–422 (2002).
[CrossRef]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79(18), 2865–2867 (2001).
[CrossRef]

Maslov, A. V.

A. V. Maslov, M. I. Bakunov, and C. Z. Ning, “Distribution of optical emission between guided modes and free space in a semiconductor nanowire,” J. Appl. Phys. 99(2), 024314 (2006).
[CrossRef]

Maze, J. R.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[CrossRef] [PubMed]

Miyazawa, T.

T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
[CrossRef]

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

Mohtashami, A.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

Moreau, E.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar,” Physica E 13(2-4), 418–422 (2002).
[CrossRef]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79(18), 2865–2867 (2001).
[CrossRef]

Mørk, J.

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[CrossRef]

N. Gregersen and J. Mørk, “An Improved Perfectly Matched Layer for the Eigenmode Expansion Technique,” Opt. Quantum Electron. 40(11-12), 957–966 (2008).
[CrossRef]

N. Gregersen, T. R. Nielsen, J. Claudon, J. M. Gérard, and J. Mørk, “Controlling the emission profile of a nanowire with a conical taper,” Opt. Lett. 33(15), 1693–1695 (2008).
[CrossRef] [PubMed]

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007).
[CrossRef]

Naesby, A.

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[CrossRef]

Nakaoka, T.

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

Neumann, A.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

Nicoll, C. A.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

A. J. Bennett, R. B. Patel, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Interference of dissimilar photon sources,” Nat. Phys. 5(10), 715–717 (2009).
[CrossRef]

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008).
[CrossRef] [PubMed]

Nielsen, T. R.

N. Gregersen, T. R. Nielsen, J. Claudon, J. M. Gérard, and J. Mørk, “Controlling the emission profile of a nanowire with a conical taper,” Opt. Lett. 33(15), 1693–1695 (2008).
[CrossRef] [PubMed]

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007).
[CrossRef]

Ning, C. Z.

A. V. Maslov, M. I. Bakunov, and C. Z. Ning, “Distribution of optical emission between guided modes and free space in a semiconductor nanowire,” J. Appl. Phys. 99(2), 024314 (2006).
[CrossRef]

Nowicki-Bringuier, Y.-R.

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. (France) 32(2-3), 151–154 (2007).

Okumura, S.

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
[CrossRef]

Ordal, M. A.

Patel, R. B.

A. J. Bennett, R. B. Patel, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Interference of dissimilar photon sources,” Nat. Phys. 5(10), 715–717 (2009).
[CrossRef]

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008).
[CrossRef] [PubMed]

Pawlis, A.

K. Sanaka, A. Pawlis, T. D. Ladd, K. Lischka, and Y. Yamamoto, “Indistinguishable photons from independent semiconductor nanostructures,” Phys. Rev. Lett. 103(5), 053601 (2009).
[CrossRef] [PubMed]

Pelton, M.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Pepper, M.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

Petroff, P. M.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

Plant, J.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Poizat, J. P.

A. Auffèves, J. M. Gérard, and J. P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A 79(5), 053838 (2009).
[CrossRef]

Portolan, S.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

Press, D.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[CrossRef] [PubMed]

Rakher, M. T.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

Reinecke, T. L.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Reinhart, F. K.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[CrossRef]

Reithmaier, J. P.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Reitzenstein, S.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Ritchie, D. A.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

A. J. Bennett, R. B. Patel, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Interference of dissimilar photon sources,” Nat. Phys. 5(10), 715–717 (2009).
[CrossRef]

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008).
[CrossRef] [PubMed]

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

Ritzhaupt-Kleissl, E.

T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/Phenanthrene-Derivative Host-Guest Systems: Rheological, Optical and Thermal Properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
[CrossRef]

Robert, I.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar,” Physica E 13(2-4), 418–422 (2002).
[CrossRef]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79(18), 2865–2867 (2001).
[CrossRef]

Robert-Philip, I.

Roustan, J.-C.

C. Coutal, A. Azéma, and J.-C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation,” Thin Solid Films 288(1-2), 248–253 (1996).
[CrossRef]

Salter, C. L.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

Sanaka, K.

K. Sanaka, A. Pawlis, T. D. Ladd, K. Lischka, and Y. Yamamoto, “Indistinguishable photons from independent semiconductor nanostructures,” Phys. Rev. Lett. 103(5), 053601 (2009).
[CrossRef] [PubMed]

Santori, C.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Sauvan, C.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
[CrossRef] [PubMed]

Savona, V.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

Schmidt, F.

Schneider, C.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

Schulz, O.

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

Sek, G.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Seliger, M.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

Sell, D. D.

H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46(1), 250–257 (1975).
[CrossRef]

Sermage, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Shields, A. J.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

A. J. Bennett, R. B. Patel, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Interference of dissimilar photon sources,” Nat. Phys. 5(10), 715–717 (2009).
[CrossRef]

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008).
[CrossRef] [PubMed]

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
[CrossRef]

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

Sigg, H.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[CrossRef]

Solomon, G. S.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Stevenson, R. M.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

Stobbe, S.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[CrossRef] [PubMed]

Stock, E.

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

Stoltz, N. G.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

Strauf, S.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

Suhr, T.

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[CrossRef]

Sünner, T.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[CrossRef] [PubMed]

Takatsu, M.

T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
[CrossRef]

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

Takemoto, K.

T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
[CrossRef]

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

Tarel, G.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

Thierry-Mieg, V.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar,” Physica E 13(2-4), 418–422 (2002).
[CrossRef]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79(18), 2865–2867 (2001).
[CrossRef]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Thyrrestrup, H.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[CrossRef] [PubMed]

Tiberio, R. C.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995).
[CrossRef] [PubMed]

Toropov, A. I.

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

Tromborg, B.

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007).
[CrossRef]

Tu, C. W.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995).
[CrossRef] [PubMed]

Usuki, T.

T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
[CrossRef]

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Volz, T.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

Vonlanthen, A.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[CrossRef]

Vuckovic, J.

D. Englund, H. Altug, and J. Vučković, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
[CrossRef]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Ward, C. A.

Wasey, J. A. E.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[CrossRef]

Wecht, K. W.

H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46(1), 250–257 (1975).
[CrossRef]

Winger, M.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

Worthing, P. T.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[CrossRef]

Wu, S. L.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995).
[CrossRef] [PubMed]

Yamamoto, Y.

K. Sanaka, A. Pawlis, T. D. Ladd, K. Lischka, and Y. Yamamoto, “Indistinguishable photons from independent semiconductor nanostructures,” Phys. Rev. Lett. 103(5), 053601 (2009).
[CrossRef] [PubMed]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Yokoyama, N.

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
[CrossRef]

Yuan, Z.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

Zhang, B.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Zhang, J. P.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995).
[CrossRef] [PubMed]

Zhang, Y.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[CrossRef] [PubMed]

Y. Zhang and M. Lončar, “Submicrometer diameter micropillar cavities with high quality factor and ultrasmall mode volume,” Opt. Lett. 34(7), 902–904 (2009).
[CrossRef] [PubMed]

Zwiller, V.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[CrossRef]

Ann. Phys. (France) (1)

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. (France) 32(2-3), 151–154 (2007).

Appl. Opt. (2)

Appl. Phys. Lett. (6)

T. Miyazawa, T. Nakaoka, T. Usuki, Y. Arakawa, K. Takemoto, S. Hirose, S. Okumura, M. Takatsu, and N. Yokoyama, “Exciton dynamics in current-injected single quantum dot at 1.55 μm,” Appl. Phys. Lett. 92(16), 161104 (2008).
[CrossRef]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79(18), 2865–2867 (2001).
[CrossRef]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, and J. M. Gérard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007).
[CrossRef]

D. Englund, H. Altug, and J. Vučković, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
[CrossRef]

Electron. Lett. (1)

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, “Electrically driven single quantum dot polarised single photon emitter,” Electron. Lett. 42(13), 774–775 (2006).
[CrossRef]

Eur. Phys. J. D (1)

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[CrossRef]

J. Appl. Phys. (3)

A. V. Maslov, M. I. Bakunov, and C. Z. Ning, “Distribution of optical emission between guided modes and free space in a semiconductor nanowire,” J. Appl. Phys. 99(2), 024314 (2006).
[CrossRef]

H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46(1), 250–257 (1975).
[CrossRef]

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, “First demonstration of electrically driven 1.55 μm single-photon generator,” Jpn. J. Appl. Phys. 47(4), 2880–2883 (2008).
[CrossRef]

Macromol. Mater. Eng. (1)

T. Hanemann, J. Böhm, K. Honnef, E. Ritzhaupt-Kleissl, and J. Haußelt, “Polymer/Phenanthrene-Derivative Host-Guest Systems: Rheological, Optical and Thermal Properties,” Macromol. Mater. Eng. 292(3), 285–294 (2007).
[CrossRef]

Nat. Nanotechnol. (1)

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[CrossRef] [PubMed]

Nat. Photonics (3)

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
[CrossRef]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

Nat. Phys. (1)

A. J. Bennett, R. B. Patel, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Interference of dissimilar photon sources,” Nat. Phys. 5(10), 715–717 (2009).
[CrossRef]

Nature (3)

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Opt. Quantum Electron. (2)

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001).
[CrossRef]

N. Gregersen and J. Mørk, “An Improved Perfectly Matched Layer for the Eigenmode Expansion Technique,” Opt. Quantum Electron. 40(11-12), 957–966 (2008).
[CrossRef]

Phys. Rev. A (2)

A. Auffèves, J. M. Gérard, and J. P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A 79(5), 053838 (2009).
[CrossRef]

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[CrossRef]

Phys. Rev. B (2)

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80(20), 201311 (2009).
[CrossRef]

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B 75(20), 205437 (2007).
[CrossRef]

Phys. Rev. Lett. (10)

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995).
[CrossRef] [PubMed]

G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99(2), 023902 (2007).
[CrossRef] [PubMed]

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008).
[CrossRef] [PubMed]

R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot,” Phys. Rev. Lett. 100(20), 207405 (2008).
[CrossRef] [PubMed]

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[CrossRef] [PubMed]

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

K. Sanaka, A. Pawlis, T. D. Ladd, K. Lischka, and Y. Yamamoto, “Indistinguishable photons from independent semiconductor nanostructures,” Phys. Rev. Lett. 103(5), 053601 (2009).
[CrossRef] [PubMed]

Physica E (1)

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar,” Physica E 13(2-4), 418–422 (2002).
[CrossRef]

Science (1)

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002).
[CrossRef]

Thin Solid Films (1)

C. Coutal, A. Azéma, and J.-C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation,” Thin Solid Films 288(1-2), 248–253 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Design A (a) featuring a top conical tapering and designs B (b) and C (c) with inverted tapering and anti-reflection coatings. Design B features a planar ITO top contact while design C includes a gold ring contact and an air pocket.

Fig. 2
Fig. 2

Sketch of element I (a) and β as function of nanowire radius Rnw (b) for various cladding refractive indices nclad .

Fig. 3
Fig. 3

Sketch of element II (a) and reflectivity R 11 = |r 11|2 of the HE11 mode (b) as function of ITO bottom contact thickness tITO for polymer and air claddings.

Fig. 4
Fig. 4

Sketch of element IV-A (a) and total transmission and relative collection efficiency γt for 0.5 and 0.8 NA lenses (b) as function of opening angle α for a perfectly sharp tip. Relative collection efficiency γt for a 0.8 NA lens (c) as function of α for various values of Rtr . Rnw = 110 nm.

Fig. 5
Fig. 5

Sketch of element III-B (a) and III-C (d). Transmission γt of the fundamental HE11 mode as function of sidewall angle θ for various values of Rtop for polymer cladding (b) and air cladding (e). Transmission γt as function of Rtop for h = 10 and 20 μm for polymer cladding (c) and air cladding (f).

Fig. 6
Fig. 6

Sketch of element III-A (a). Transmission γc of the fundamental HE11 mode through contact section as function of Rnw for various side contact thicknesses for an ITO contact (b) and a gold contact (c).

Fig. 7
Fig. 7

Sketch of element IV-B (a) and total transmission and relative collection efficiency γc for 0.5 and 0.8 NA lenses as function of Rtop for polymer (b) and air (c) claddings. Sketch of element IV-C (d) and relative collection efficiency γc for a 0.8 NA lens as function of Rtop for various values of d for polymer (e) and air (f) claddings.

Fig. 8
Fig. 8

Scanning-electron micrographs of regular conical tapering (a) featuring an opening angle α ~5° and inverted tapering section (b) with a side wall angle θ ~3°.

Fig. 9
Fig. 9

SPS efficiency ε for design A (a) as function of opening angle α for 0.5 and 0.8 NA lenses. SPS efficiency ε for designs B (b) and C (c) as function of Rtop for a 0.8 NA lens. Results from the simplified model and the exact computation are shown.

Tables (2)

Tables Icon

Table 1 Material refractive indices.

Tables Icon

Table 2 Element coefficients.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε = | c u | 2 γ g T o t a l ,
c u = c 0 ( 1 + | r 11 | e i ϕ ) .
g T o t a l = | c u | 2 + ( 1 | r 11 | 2 ) | c d | 2 + g R a d .
ε = β γ ( 1 + | r 11 | ) 2 2 ( 1 + β | r 11 | ) .

Metrics