Abstract

A novel method for fabrication of 2D and 3D metal nanoparticle structures and arrays is proposed. This technique is based on laser-induced transfer of molten metal nanodroplets from thin metal films. Metal nanoparticles are produced by solidification of these nanodroplets. The size of the transferred nanoparticles can be controllably changed in the range from 180 nm to 1500 nm. Several examples of complex 2D and 3D microstructures generated form gold nanoparticles are demonstrated.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
    [CrossRef] [PubMed]
  2. J. Dai, F. Cajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77(11), 115419 (2008).
    [CrossRef]
  3. K. Li, X. Li, M. I. Stockman, and D. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71(11), 115409 (2005).
    [CrossRef]
  4. M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008).
    [CrossRef]
  5. C. Rockstuhl and T. Scharf, “A metamaterial based on coupled metallic nanoparticles and its band-gap property,” J. Microsc. 229(2), 281–286 (2008).
    [CrossRef] [PubMed]
  6. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [CrossRef] [PubMed]
  7. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
    [CrossRef] [PubMed]
  8. V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35(7), 956–958 (2010).
    [CrossRef] [PubMed]
  9. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [CrossRef] [PubMed]
  10. A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524–1526 (2005).
    [CrossRef] [PubMed]
  11. I. P. Radko, A. B. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi, “Refracting surface plasmon polaritons with nanoparticle arrays,” Opt. Express 16(6), 3924–3930 (2008).
    [CrossRef] [PubMed]
  12. C. Reinhardt, S. Passinger, B. N. Chichkov, C. Marquart, I. P. Radko, and S. I. Bozhevolnyi, “Laser-fabricated dielectric optical components for surface plasmon polaritons,” Opt. Lett. 31(9), 1307–1309 (2006).
    [CrossRef] [PubMed]
  13. R. Kiyan, C. Reinhardt, S. Passinger, A. L. Stepanov, A. Hohenau, J. R. Krenn, and B. N. Chichkov, “Rapid prototyping of optical components for surface plasmon polaritons,” Opt. Express 15(7), 4205–4215 (2007).
    [CrossRef] [PubMed]
  14. A. Habenicht, M. Olapinski, F. Burmeister, P. Leiderer, and J. Boneberg, “Jumping nanodroplets,” Science 309(5743), 2043–2045 (2005).
    [CrossRef] [PubMed]
  15. J. Boneberg, A. Habenicht, D. Benner, P. Leiderer, M. Trautvetter, C. Pfahler, A. Plettl, and P. Ziemann, “Jumping nanodroplets: a new route towards metallic nano-particles,” Appl. Phys., A Mater. Sci. Process. 93(2), 415–419 (2008).
    [CrossRef]
  16. R. A. McMillan, C. D. Paavola, J. Howard, S. L. Chan, N. J. Zaluzec, and J. D. Trent, “Ordered nanoparticle arrays formed on engineered chaperonin protein templates,” Nat. Mater. 1(4), 247–252 (2002).
    [CrossRef]
  17. Th. Schimmel, H. v. Löhneysen, Ch. Obermair, and M. Barczewski, Nanotechnology. Physics, Chemistry, and Biology of Functional Nanostructures (Landesstiftung Baden-Wüttemberg gGmbH, Karlsruhe, 2008).
  18. G. Zhang, D. Wang, and H. Möhwald, “Ordered binary arrays of Au nanoparticles derived from colloidal lithography,” Nano Lett. 7(1), 127–132 (2007).
    [CrossRef] [PubMed]
  19. G. Zhang and D. Wang, “Colloidal lithography--the art of nanochemical patterning,” Chem. Asian J. 4(2), 236–245 (2009).
    [CrossRef]
  20. M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
    [CrossRef] [PubMed]
  21. G. Zhang, J. Zhang, G. Xie, Z. Liu, and H. Shao, “Cicada wings: a stamp from nature for nanoimprint lithography,” Small 2(12), 1440–1443 (2006).
    [CrossRef] [PubMed]
  22. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [CrossRef] [PubMed]
  23. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
    [CrossRef]
  24. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
    [CrossRef]
  25. A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17(21), 18820–18825 (2009).
    [CrossRef]
  26. A. I. Kuznetsov, A. B. Evlyukhin, C. Reinhardt, A. Seidel, R. Kiyan, W. Cheng, A. Ovsianikov, and B. N. Chichkov, “Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications,” J. Opt. Soc. Am. B 26(12), B130–B138 (2009).
    [CrossRef]
  27. D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86(24), 244103 (2005).
    [CrossRef]
  28. D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
    [CrossRef]
  29. L. Yang, C.- Wang, X.- Ni, Z.- Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89(16), 161110 (2006).
    [CrossRef]
  30. A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by nanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
    [CrossRef]
  31. A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Nanostructuring of thin gold films by femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 94(2), 221–230 (2009).
    [CrossRef]

2010 (1)

2009 (8)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

G. Zhang and D. Wang, “Colloidal lithography--the art of nanochemical patterning,” Chem. Asian J. 4(2), 236–245 (2009).
[CrossRef]

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17(21), 18820–18825 (2009).
[CrossRef]

A. I. Kuznetsov, A. B. Evlyukhin, C. Reinhardt, A. Seidel, R. Kiyan, W. Cheng, A. Ovsianikov, and B. N. Chichkov, “Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications,” J. Opt. Soc. Am. B 26(12), B130–B138 (2009).
[CrossRef]

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Nanostructuring of thin gold films by femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 94(2), 221–230 (2009).
[CrossRef]

2008 (7)

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by nanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
[CrossRef]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[CrossRef]

J. Dai, F. Cajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77(11), 115419 (2008).
[CrossRef]

M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008).
[CrossRef]

C. Rockstuhl and T. Scharf, “A metamaterial based on coupled metallic nanoparticles and its band-gap property,” J. Microsc. 229(2), 281–286 (2008).
[CrossRef] [PubMed]

I. P. Radko, A. B. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi, “Refracting surface plasmon polaritons with nanoparticle arrays,” Opt. Express 16(6), 3924–3930 (2008).
[CrossRef] [PubMed]

J. Boneberg, A. Habenicht, D. Benner, P. Leiderer, M. Trautvetter, C. Pfahler, A. Plettl, and P. Ziemann, “Jumping nanodroplets: a new route towards metallic nano-particles,” Appl. Phys., A Mater. Sci. Process. 93(2), 415–419 (2008).
[CrossRef]

2007 (2)

2006 (4)

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[CrossRef]

L. Yang, C.- Wang, X.- Ni, Z.- Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89(16), 161110 (2006).
[CrossRef]

G. Zhang, J. Zhang, G. Xie, Z. Liu, and H. Shao, “Cicada wings: a stamp from nature for nanoimprint lithography,” Small 2(12), 1440–1443 (2006).
[CrossRef] [PubMed]

C. Reinhardt, S. Passinger, B. N. Chichkov, C. Marquart, I. P. Radko, and S. I. Bozhevolnyi, “Laser-fabricated dielectric optical components for surface plasmon polaritons,” Opt. Lett. 31(9), 1307–1309 (2006).
[CrossRef] [PubMed]

2005 (5)

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524–1526 (2005).
[CrossRef] [PubMed]

A. Habenicht, M. Olapinski, F. Burmeister, P. Leiderer, and J. Boneberg, “Jumping nanodroplets,” Science 309(5743), 2043–2045 (2005).
[CrossRef] [PubMed]

K. Li, X. Li, M. I. Stockman, and D. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71(11), 115409 (2005).
[CrossRef]

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[CrossRef] [PubMed]

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86(24), 244103 (2005).
[CrossRef]

2003 (2)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

2002 (1)

R. A. McMillan, C. D. Paavola, J. Howard, S. L. Chan, N. J. Zaluzec, and J. D. Trent, “Ordered nanoparticle arrays formed on engineered chaperonin protein templates,” Nat. Mater. 1(4), 247–252 (2002).
[CrossRef]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Aussenegg, F. R.

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Banks, D. P.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[CrossRef]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Benner, D.

J. Boneberg, A. Habenicht, D. Benner, P. Leiderer, M. Trautvetter, C. Pfahler, A. Plettl, and P. Ziemann, “Jumping nanodroplets: a new route towards metallic nano-particles,” Appl. Phys., A Mater. Sci. Process. 93(2), 415–419 (2008).
[CrossRef]

Bergman, D.

K. Li, X. Li, M. I. Stockman, and D. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71(11), 115409 (2005).
[CrossRef]

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

Boltasseva, A.

Boneberg, J.

J. Boneberg, A. Habenicht, D. Benner, P. Leiderer, M. Trautvetter, C. Pfahler, A. Plettl, and P. Ziemann, “Jumping nanodroplets: a new route towards metallic nano-particles,” Appl. Phys., A Mater. Sci. Process. 93(2), 415–419 (2008).
[CrossRef]

A. Habenicht, M. Olapinski, F. Burmeister, P. Leiderer, and J. Boneberg, “Jumping nanodroplets,” Science 309(5743), 2043–2045 (2005).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

Burmeister, F.

A. Habenicht, M. Olapinski, F. Burmeister, P. Leiderer, and J. Boneberg, “Jumping nanodroplets,” Science 309(5743), 2043–2045 (2005).
[CrossRef] [PubMed]

Cajko, F.

J. Dai, F. Cajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77(11), 115419 (2008).
[CrossRef]

Chai, L.

L. Yang, C.- Wang, X.- Ni, Z.- Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89(16), 161110 (2006).
[CrossRef]

Chan, S. L.

R. A. McMillan, C. D. Paavola, J. Howard, S. L. Chan, N. J. Zaluzec, and J. D. Trent, “Ordered nanoparticle arrays formed on engineered chaperonin protein templates,” Nat. Mater. 1(4), 247–252 (2002).
[CrossRef]

Cheng, W.

Chichkov, B. N.

Dai, J.

J. Dai, F. Cajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77(11), 115419 (2008).
[CrossRef]

Ditlbacher, H.

Drezet, A.

Eason, R. W.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[CrossRef]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Evlyukhin, A. B.

Firsov, A. A.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[CrossRef] [PubMed]

Fu, L.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[CrossRef] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[CrossRef]

Geim, A. K.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[CrossRef] [PubMed]

Giersig, M.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[CrossRef] [PubMed]

Giessen, H.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[CrossRef] [PubMed]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[CrossRef]

Gleeson, H. F.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[CrossRef] [PubMed]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35(7), 956–958 (2010).
[CrossRef] [PubMed]

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[CrossRef] [PubMed]

Grivas, C.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[CrossRef]

Grosu, V.

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86(24), 244103 (2005).
[CrossRef]

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[CrossRef]

Gwinner, M. C.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[CrossRef] [PubMed]

Habenicht, A.

J. Boneberg, A. Habenicht, D. Benner, P. Leiderer, M. Trautvetter, C. Pfahler, A. Plettl, and P. Ziemann, “Jumping nanodroplets: a new route towards metallic nano-particles,” Appl. Phys., A Mater. Sci. Process. 93(2), 415–419 (2008).
[CrossRef]

A. Habenicht, M. Olapinski, F. Burmeister, P. Leiderer, and J. Boneberg, “Jumping nanodroplets,” Science 309(5743), 2043–2045 (2005).
[CrossRef] [PubMed]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Hohenau, A.

Howard, J.

R. A. McMillan, C. D. Paavola, J. Howard, S. L. Chan, N. J. Zaluzec, and J. D. Trent, “Ordered nanoparticle arrays formed on engineered chaperonin protein templates,” Nat. Mater. 1(4), 247–252 (2002).
[CrossRef]

Jia, W.

L. Yang, C.- Wang, X.- Ni, Z.- Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89(16), 161110 (2006).
[CrossRef]

Kabashin, A. V.

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35(7), 956–958 (2010).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[CrossRef]

Kandulski, W.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[CrossRef] [PubMed]

Kawaguchi, Y.

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by nanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
[CrossRef]

Khrushchev, I. Y.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[CrossRef] [PubMed]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Kiyan, R.

Koch, J.

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17(21), 18820–18825 (2009).
[CrossRef]

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Nanostructuring of thin gold films by femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 94(2), 221–230 (2009).
[CrossRef]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Koroknay, E.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[CrossRef] [PubMed]

Kravets, V. G.

Krenn, J. R.

Kurosaki, R.

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by nanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
[CrossRef]

Kuznetsov, A. I.

Leiderer, P.

J. Boneberg, A. Habenicht, D. Benner, P. Leiderer, M. Trautvetter, C. Pfahler, A. Plettl, and P. Ziemann, “Jumping nanodroplets: a new route towards metallic nano-particles,” Appl. Phys., A Mater. Sci. Process. 93(2), 415–419 (2008).
[CrossRef]

A. Habenicht, M. Olapinski, F. Burmeister, P. Leiderer, and J. Boneberg, “Jumping nanodroplets,” Science 309(5743), 2043–2045 (2005).
[CrossRef] [PubMed]

Leitner, A.

Li, K.

K. Li, X. Li, M. I. Stockman, and D. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71(11), 115409 (2005).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

Li, X.

K. Li, X. Li, M. I. Stockman, and D. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71(11), 115409 (2005).
[CrossRef]

Liu, H.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

Liu, N.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[CrossRef]

Liu, Z.

G. Zhang, J. Zhang, G. Xie, Z. Liu, and H. Shao, “Cicada wings: a stamp from nature for nanoimprint lithography,” Small 2(12), 1440–1443 (2006).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Marquart, C.

McMillan, R. A.

R. A. McMillan, C. D. Paavola, J. Howard, S. L. Chan, N. J. Zaluzec, and J. D. Trent, “Ordered nanoparticle arrays formed on engineered chaperonin protein templates,” Nat. Mater. 1(4), 247–252 (2002).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Mills, J. D.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[CrossRef]

Möhwald, H.

G. Zhang, D. Wang, and H. Möhwald, “Ordered binary arrays of Au nanoparticles derived from colloidal lithography,” Nano Lett. 7(1), 127–132 (2007).
[CrossRef] [PubMed]

Narazaki, A.

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by nanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
[CrossRef]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Ni, X.-

L. Yang, C.- Wang, X.- Ni, Z.- Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89(16), 161110 (2006).
[CrossRef]

Niino, H.

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by nanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
[CrossRef]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Olapinski, M.

A. Habenicht, M. Olapinski, F. Burmeister, P. Leiderer, and J. Boneberg, “Jumping nanodroplets,” Science 309(5743), 2043–2045 (2005).
[CrossRef] [PubMed]

Ovsianikov, A.

Paavola, C. D.

R. A. McMillan, C. D. Paavola, J. Howard, S. L. Chan, N. J. Zaluzec, and J. D. Trent, “Ordered nanoparticle arrays formed on engineered chaperonin protein templates,” Nat. Mater. 1(4), 247–252 (2002).
[CrossRef]

Passinger, S.

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Patoka, P.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[CrossRef] [PubMed]

Petrovic, J.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[CrossRef] [PubMed]

Pfahler, C.

J. Boneberg, A. Habenicht, D. Benner, P. Leiderer, M. Trautvetter, C. Pfahler, A. Plettl, and P. Ziemann, “Jumping nanodroplets: a new route towards metallic nano-particles,” Appl. Phys., A Mater. Sci. Process. 93(2), 415–419 (2008).
[CrossRef]

Plettl, A.

J. Boneberg, A. Habenicht, D. Benner, P. Leiderer, M. Trautvetter, C. Pfahler, A. Plettl, and P. Ziemann, “Jumping nanodroplets: a new route towards metallic nano-particles,” Appl. Phys., A Mater. Sci. Process. 93(2), 415–419 (2008).
[CrossRef]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Radko, I. P.

Reinhardt, C.

Requicha, A. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Rockstuhl, C.

C. Rockstuhl and T. Scharf, “A metamaterial based on coupled metallic nanoparticles and its band-gap property,” J. Microsc. 229(2), 281–286 (2008).
[CrossRef] [PubMed]

Sato, T.

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by nanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
[CrossRef]

Scharf, T.

C. Rockstuhl and T. Scharf, “A metamaterial based on coupled metallic nanoparticles and its band-gap property,” J. Microsc. 229(2), 281–286 (2008).
[CrossRef] [PubMed]

Schedin, F.

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[CrossRef]

Seidel, A.

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Shao, H.

G. Zhang, J. Zhang, G. Xie, Z. Liu, and H. Shao, “Cicada wings: a stamp from nature for nanoimprint lithography,” Small 2(12), 1440–1443 (2006).
[CrossRef] [PubMed]

Steinberger, B.

Stepanov, A. L.

Stockman, M. I.

M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008).
[CrossRef]

J. Dai, F. Cajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77(11), 115419 (2008).
[CrossRef]

K. Li, X. Li, M. I. Stockman, and D. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71(11), 115409 (2005).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Trautvetter, M.

J. Boneberg, A. Habenicht, D. Benner, P. Leiderer, M. Trautvetter, C. Pfahler, A. Plettl, and P. Ziemann, “Jumping nanodroplets: a new route towards metallic nano-particles,” Appl. Phys., A Mater. Sci. Process. 93(2), 415–419 (2008).
[CrossRef]

Trent, J. D.

R. A. McMillan, C. D. Paavola, J. Howard, S. L. Chan, N. J. Zaluzec, and J. D. Trent, “Ordered nanoparticle arrays formed on engineered chaperonin protein templates,” Nat. Mater. 1(4), 247–252 (2002).
[CrossRef]

Tsukerman, I.

J. Dai, F. Cajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77(11), 115419 (2008).
[CrossRef]

Wang, C.-

L. Yang, C.- Wang, X.- Ni, Z.- Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89(16), 161110 (2006).
[CrossRef]

Wang, D.

G. Zhang and D. Wang, “Colloidal lithography--the art of nanochemical patterning,” Chem. Asian J. 4(2), 236–245 (2009).
[CrossRef]

G. Zhang, D. Wang, and H. Möhwald, “Ordered binary arrays of Au nanoparticles derived from colloidal lithography,” Nano Lett. 7(1), 127–132 (2007).
[CrossRef] [PubMed]

Wang, Z.-

L. Yang, C.- Wang, X.- Ni, Z.- Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89(16), 161110 (2006).
[CrossRef]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Willis, D. A.

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86(24), 244103 (2005).
[CrossRef]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Xie, G.

G. Zhang, J. Zhang, G. Xie, Z. Liu, and H. Shao, “Cicada wings: a stamp from nature for nanoimprint lithography,” Small 2(12), 1440–1443 (2006).
[CrossRef] [PubMed]

Yang, L.

L. Yang, C.- Wang, X.- Ni, Z.- Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89(16), 161110 (2006).
[CrossRef]

Zaluzec, N. J.

R. A. McMillan, C. D. Paavola, J. Howard, S. L. Chan, N. J. Zaluzec, and J. D. Trent, “Ordered nanoparticle arrays formed on engineered chaperonin protein templates,” Nat. Mater. 1(4), 247–252 (2002).
[CrossRef]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Zergioti, I.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[CrossRef]

Zhang, G.

G. Zhang and D. Wang, “Colloidal lithography--the art of nanochemical patterning,” Chem. Asian J. 4(2), 236–245 (2009).
[CrossRef]

G. Zhang, D. Wang, and H. Möhwald, “Ordered binary arrays of Au nanoparticles derived from colloidal lithography,” Nano Lett. 7(1), 127–132 (2007).
[CrossRef] [PubMed]

G. Zhang, J. Zhang, G. Xie, Z. Liu, and H. Shao, “Cicada wings: a stamp from nature for nanoimprint lithography,” Small 2(12), 1440–1443 (2006).
[CrossRef] [PubMed]

Zhang, J.

G. Zhang, J. Zhang, G. Xie, Z. Liu, and H. Shao, “Cicada wings: a stamp from nature for nanoimprint lithography,” Small 2(12), 1440–1443 (2006).
[CrossRef] [PubMed]

Zhang, Y.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[CrossRef] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Zhu, S.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

Ziemann, P.

J. Boneberg, A. Habenicht, D. Benner, P. Leiderer, M. Trautvetter, C. Pfahler, A. Plettl, and P. Ziemann, “Jumping nanodroplets: a new route towards metallic nano-particles,” Appl. Phys., A Mater. Sci. Process. 93(2), 415–419 (2008).
[CrossRef]

Appl. Phys. Express (1)

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by nanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86(24), 244103 (2005).
[CrossRef]

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[CrossRef]

L. Yang, C.- Wang, X.- Ni, Z.- Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89(16), 161110 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Nanostructuring of thin gold films by femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 94(2), 221–230 (2009).
[CrossRef]

J. Boneberg, A. Habenicht, D. Benner, P. Leiderer, M. Trautvetter, C. Pfahler, A. Plettl, and P. Ziemann, “Jumping nanodroplets: a new route towards metallic nano-particles,” Appl. Phys., A Mater. Sci. Process. 93(2), 415–419 (2008).
[CrossRef]

Chem. Asian J. (1)

G. Zhang and D. Wang, “Colloidal lithography--the art of nanochemical patterning,” Chem. Asian J. 4(2), 236–245 (2009).
[CrossRef]

J. Microsc. (1)

C. Rockstuhl and T. Scharf, “A metamaterial based on coupled metallic nanoparticles and its band-gap property,” J. Microsc. 229(2), 281–286 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

G. Zhang, D. Wang, and H. Möhwald, “Ordered binary arrays of Au nanoparticles derived from colloidal lithography,” Nano Lett. 7(1), 127–132 (2007).
[CrossRef] [PubMed]

Nat. Mater. (4)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[CrossRef]

R. A. McMillan, C. D. Paavola, J. Howard, S. L. Chan, N. J. Zaluzec, and J. D. Trent, “Ordered nanoparticle arrays formed on engineered chaperonin protein templates,” Nat. Mater. 1(4), 247–252 (2002).
[CrossRef]

Nat. Photonics (2)

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008).
[CrossRef]

Nature (2)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B (2)

J. Dai, F. Cajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77(11), 115419 (2008).
[CrossRef]

K. Li, X. Li, M. I. Stockman, and D. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71(11), 115409 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[CrossRef] [PubMed]

Science (1)

A. Habenicht, M. Olapinski, F. Burmeister, P. Leiderer, and J. Boneberg, “Jumping nanodroplets,” Science 309(5743), 2043–2045 (2005).
[CrossRef] [PubMed]

Small (2)

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[CrossRef] [PubMed]

G. Zhang, J. Zhang, G. Xie, Z. Liu, and H. Shao, “Cicada wings: a stamp from nature for nanoimprint lithography,” Small 2(12), 1440–1443 (2006).
[CrossRef] [PubMed]

Other (1)

Th. Schimmel, H. v. Löhneysen, Ch. Obermair, and M. Barczewski, Nanotechnology. Physics, Chemistry, and Biology of Functional Nanostructures (Landesstiftung Baden-Wüttemberg gGmbH, Karlsruhe, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Laser-induced forward transfer (LIFT) scheme. (b) Laser-induced backward transfer (LIBT) scheme.

Fig. 2
Fig. 2

(a) Side-view SEM image of a jet-like structure fabricated on the surface of a 60 nm gold film by a single 30 fs laser pulse with Gaussian intensity profile. Laser beam with a diameter of 8 mm is focused onto the sample surface by a 20 mm focus lens. Laser pulse energy is 70 nJ. (b) Side-view SEM image of an array of 800 nm spherical gold particles transferred onto a glass substrate by subsequent 30 fs laser pulses in the LIBT configuration. The focusing conditions are the same as in (a). Laser pulse energy is 75 nJ. (c) Side-view SEM image of a 180 nm gold particle transferred in the LIFT configuration from a 20 nm gold film using 100 × oil-immersed microscope objective (NA 1.4). Laser pulse energy is 3.3 nJ. All images are taken at an angle of 45°.

Fig. 3
Fig. 3

Side-view SEM images of gold particle structures with interparticle distance of 1.5 µm (a)&(b) and 1µm (c)&(d). Each particle is transferred by a single 30 fs laser pulse with the Gaussian intensity profile in the LIFT configuration. Laser beam with a diameter of 8 mm is focused onto the sample surface by a 20 mm focus lens. Laser pulse energy is 50 nJ. Between the laser pulses, the donor substrate is shifted relative to the receiver substrate. All images are taken at an angle of 45°.

Fig. 4
Fig. 4

Side-view SEM images of gold structures formed on a glass receiver surface in case when a second gold particle is ejected on top of a first one. Laser irradiation conditions are the same as in Fig. 3. The donor substrate is shifted relative to the receiver substrate between the laser pulses. All images are taken at an angle of 45°.

Fig. 5
Fig. 5

Side view SEM images of gold particle structures fabricated on a glass receiver substrate covered with a 60 nm gold film. The particles are ejected on top of each other by subsequent 30 fs laser pulses with the Gaussian intensity profile. The donor substrate is shifted relative to the receiver substrate between the laser pulses. Laser beam with a diameter of 8 mm is focused onto the sample surface by a 20 mm focus lens. Laser pulse energy is 35 nJ. All images are taken at an angle of 45°.

Metrics