Abstract

The range-gated imaging systems are reliable underwater imaging system with the capability to minimize backscattering effect from turbid media. The tail-gating technique has been developed to fine tune the signal to backscattering ratio and hence improve the gated image quality. However, the tail-gating technique has limited image quality enhancement in high turbidity levels. In this paper, we developed a numerical model of range-gated underwater imaging system for near target in turbid medium. The simulation results matched the experimental work favorably. Further investigation using this numerical model shows that the multiple scattering components of the backscattering noise dominate for propagation length larger than 4.2 Attenuation Length (AL). This has limited the enhancement of tail-gating technique in high turbidity conditions.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. A. Swartz, “Laser range gated underwater imaging advances,” IEEE J. Ocean Eng. 19, 722–727 (1994).
  2. H. Sakai, J. Akizono, S. Yasumura, and Y. Takahashi, “Underwater laser viewing system and its application”, in Proceeding of IEEE Conference on Underwater Technology (Institute of Electrical and Electronics Engineers, New York, 161–167 (1988).
  3. C. Tan, A. Sluzek, and G. Seet, “Model of gated imaging in turbid media,” Opt. Eng. 44, 116002 (2005).
    [CrossRef]
  4. N. H. Witherspoon, and J. H. Holloway, Jr., “Feasibility testing of a range gated laser illuminated underwater imaging system”, in Ocean Optics X, Richard W. Spinrad, ed., Proc. SPIE 1302, 414 – 420 (1990).
  5. E. A. McLean, H. R. Burris, and M. P. Strand, “Short pulse range gated optical imaging in turbid water,” Appl. Opt. 34(21), 4343–4351 (1995).
    [CrossRef] [PubMed]
  6. R. Esposito, S. De Nicola, M. Brambilla, A. Pifferi, L. Spinelli, and M. Lepore, “Depth dependence of estimated optical properties of a scattering inclusion by time-resolved contrast functions,” Opt. Express 16(22), 17667–17681 (2008).
    [CrossRef] [PubMed]
  7. A. Liebert, H. Wabnitz, N. Zołek, and R. Macdonald, “Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media,” Opt. Express 16(17), 13188–13202 (2008).
    [CrossRef] [PubMed]
  8. L. R. Bissonnette, “Multiple scattering Lidar equation,” Appl. Opt. 35(33), 6449–6465 (1996).
    [CrossRef] [PubMed]
  9. E. P. Zege, I. L. Katsev, A. S. Prikhach, and G. D. Ludbrook, “Computer simulation with regard to pulse stretching for oceanic LIDAR return”, in Proceedings of International Conference Current Problems in Optics of Natural Waters (D. S. Rozhdestvensky Optical Society), 255–260 (2001).
  10. F. Falk, and R. Lange, “Solution method for the LIDAR equation”, in LIDAR for Remote Sensing, Richard J. Becherer and Christian Werner, eds., Proc. SPIE 1714, 303–308 (1992).
  11. C. S. Tan, G. L. Seet, A. Sluzek, and D. M. He, “A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium,” Opt. Lasers Eng. 43(9), 995–1009 (2005).
    [CrossRef]
  12. D. M. He and G. L. Seet, ““Underwater LIDAR imaging in highly turbid waters”, Ocean Optics of Remote Sensing and Underwater Imaging,” Proc. SPIE 4488, 71–81 (2002).
    [CrossRef]
  13. J. M. Grace, P. E. Nebolsine, D. R. Snyder, N. E. Howard, and J. R. Long, “Integration of a high-speed repetitively pulsed laser with a high-speed CCD camera,” Proc. SPIE 3642, 133–141 (1999).
    [CrossRef]
  14. F. Martelli, D. Contini, A. Taddeucci, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results,” Appl. Opt. 36(19), 4600–4612 (1997).
    [CrossRef] [PubMed]
  15. A. D. Kim and A. Ishimaru, “Optical diffusion of continuous-wave, pulsed, and density waves in scattering media and comparisons with radiative transfer,” Appl. Opt. 37(22), 5313–5319 (1998).
    [CrossRef]
  16. L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, and G. A. Isaac, “Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements,” Appl. Opt. 41(30), 6307–6324 (2002).
    [CrossRef] [PubMed]
  17. G. D. Gilbert, and M. H. North, “Studies of optical ringing in seawater”, in Ocean Optics XII, Jules S. Jaffe, ed., Proc. SPIE 2258, 472–479 (1994).
  18. R. E. Walker and J. W. McLean, “Lidar equations for turbid media with pulse stretching,” Appl. Opt. 38(12), 2384–2397 (1999).
    [CrossRef]
  19. C. S. Tan, G. L. Seet, and A. Sluzek, “Practical quantitative assessment of imaging system in turbid water using a modified fidelity index,” in Visual Information Processing XII, Z. Rahman et al., Proc. SPIE 5108, 51–62 (2003).
  20. I. V. Yaroslavsky, A. N. Yaroslavsky, V. V. Tuchin, and H. J. Schwarzmaier, “Effect of the scattering delay on time-dependent photon migration in turbid media,” Appl. Opt. 36(25), 6529–6538 (1997).
    [CrossRef]
  21. S. L. Jacques, “Light distributions from point, line and plane sources for photochemical reactions and fluorescence in turbid biological tissues,” Photochem. Photobiol. 67(1), 23–32 (1998).
    [CrossRef] [PubMed]
  22. L. G. Henyey and G. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
    [CrossRef]
  23. A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, and G. Zaccanti, “Monte carlo procedure for investigating light propagation and imaging of highly scattering media,” Appl. Opt. 37(31), 7392–7400 (1998).
    [CrossRef]
  24. D. Curtis, Mobley, “Light and water, radiative transfer in natural water”, Academic Press, 1994.

2008 (2)

2005 (2)

C. Tan, A. Sluzek, and G. Seet, “Model of gated imaging in turbid media,” Opt. Eng. 44, 116002 (2005).
[CrossRef]

C. S. Tan, G. L. Seet, A. Sluzek, and D. M. He, “A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium,” Opt. Lasers Eng. 43(9), 995–1009 (2005).
[CrossRef]

2002 (2)

D. M. He and G. L. Seet, ““Underwater LIDAR imaging in highly turbid waters”, Ocean Optics of Remote Sensing and Underwater Imaging,” Proc. SPIE 4488, 71–81 (2002).
[CrossRef]

L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, and G. A. Isaac, “Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements,” Appl. Opt. 41(30), 6307–6324 (2002).
[CrossRef] [PubMed]

1999 (2)

J. M. Grace, P. E. Nebolsine, D. R. Snyder, N. E. Howard, and J. R. Long, “Integration of a high-speed repetitively pulsed laser with a high-speed CCD camera,” Proc. SPIE 3642, 133–141 (1999).
[CrossRef]

R. E. Walker and J. W. McLean, “Lidar equations for turbid media with pulse stretching,” Appl. Opt. 38(12), 2384–2397 (1999).
[CrossRef]

1998 (3)

1997 (2)

1996 (1)

1995 (1)

1994 (1)

B. A. Swartz, “Laser range gated underwater imaging advances,” IEEE J. Ocean Eng. 19, 722–727 (1994).

1941 (1)

L. G. Henyey and G. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Alianelli, L.

Bissonnette, L. R.

Blumetti, C.

Brambilla, M.

Burris, H. R.

Cober, S. G.

Contini, D.

De Nicola, S.

Esposito, R.

Grace, J. M.

J. M. Grace, P. E. Nebolsine, D. R. Snyder, N. E. Howard, and J. R. Long, “Integration of a high-speed repetitively pulsed laser with a high-speed CCD camera,” Proc. SPIE 3642, 133–141 (1999).
[CrossRef]

Greenstein, G. L.

L. G. Henyey and G. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

He, D. M.

C. S. Tan, G. L. Seet, A. Sluzek, and D. M. He, “A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium,” Opt. Lasers Eng. 43(9), 995–1009 (2005).
[CrossRef]

D. M. He and G. L. Seet, ““Underwater LIDAR imaging in highly turbid waters”, Ocean Optics of Remote Sensing and Underwater Imaging,” Proc. SPIE 4488, 71–81 (2002).
[CrossRef]

Henyey, L. G.

L. G. Henyey and G. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Howard, N. E.

J. M. Grace, P. E. Nebolsine, D. R. Snyder, N. E. Howard, and J. R. Long, “Integration of a high-speed repetitively pulsed laser with a high-speed CCD camera,” Proc. SPIE 3642, 133–141 (1999).
[CrossRef]

Isaac, G. A.

Ishimaru, A.

Ismaelli, A.

Jacques, S. L.

S. L. Jacques, “Light distributions from point, line and plane sources for photochemical reactions and fluorescence in turbid biological tissues,” Photochem. Photobiol. 67(1), 23–32 (1998).
[CrossRef] [PubMed]

Kim, A. D.

Lepore, M.

Liebert, A.

Long, J. R.

J. M. Grace, P. E. Nebolsine, D. R. Snyder, N. E. Howard, and J. R. Long, “Integration of a high-speed repetitively pulsed laser with a high-speed CCD camera,” Proc. SPIE 3642, 133–141 (1999).
[CrossRef]

Macdonald, R.

Martelli, F.

McLean, E. A.

McLean, J. W.

Nebolsine, P. E.

J. M. Grace, P. E. Nebolsine, D. R. Snyder, N. E. Howard, and J. R. Long, “Integration of a high-speed repetitively pulsed laser with a high-speed CCD camera,” Proc. SPIE 3642, 133–141 (1999).
[CrossRef]

Pifferi, A.

Poutier, L.

Roy, G.

Sassaroli, A.

Schwarzmaier, H. J.

Seet, G.

C. Tan, A. Sluzek, and G. Seet, “Model of gated imaging in turbid media,” Opt. Eng. 44, 116002 (2005).
[CrossRef]

Seet, G. L.

C. S. Tan, G. L. Seet, A. Sluzek, and D. M. He, “A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium,” Opt. Lasers Eng. 43(9), 995–1009 (2005).
[CrossRef]

D. M. He and G. L. Seet, ““Underwater LIDAR imaging in highly turbid waters”, Ocean Optics of Remote Sensing and Underwater Imaging,” Proc. SPIE 4488, 71–81 (2002).
[CrossRef]

Sluzek, A.

C. S. Tan, G. L. Seet, A. Sluzek, and D. M. He, “A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium,” Opt. Lasers Eng. 43(9), 995–1009 (2005).
[CrossRef]

C. Tan, A. Sluzek, and G. Seet, “Model of gated imaging in turbid media,” Opt. Eng. 44, 116002 (2005).
[CrossRef]

Snyder, D. R.

J. M. Grace, P. E. Nebolsine, D. R. Snyder, N. E. Howard, and J. R. Long, “Integration of a high-speed repetitively pulsed laser with a high-speed CCD camera,” Proc. SPIE 3642, 133–141 (1999).
[CrossRef]

Spinelli, L.

Strand, M. P.

Swartz, B. A.

B. A. Swartz, “Laser range gated underwater imaging advances,” IEEE J. Ocean Eng. 19, 722–727 (1994).

Taddeucci, A.

Tan, C.

C. Tan, A. Sluzek, and G. Seet, “Model of gated imaging in turbid media,” Opt. Eng. 44, 116002 (2005).
[CrossRef]

Tan, C. S.

C. S. Tan, G. L. Seet, A. Sluzek, and D. M. He, “A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium,” Opt. Lasers Eng. 43(9), 995–1009 (2005).
[CrossRef]

Tuchin, V. V.

Wabnitz, H.

Walker, R. E.

Yaroslavsky, A. N.

Yaroslavsky, I. V.

Zaccanti, G.

Zolek, N.

Appl. Opt. (8)

F. Martelli, D. Contini, A. Taddeucci, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results,” Appl. Opt. 36(19), 4600–4612 (1997).
[CrossRef] [PubMed]

A. D. Kim and A. Ishimaru, “Optical diffusion of continuous-wave, pulsed, and density waves in scattering media and comparisons with radiative transfer,” Appl. Opt. 37(22), 5313–5319 (1998).
[CrossRef]

R. E. Walker and J. W. McLean, “Lidar equations for turbid media with pulse stretching,” Appl. Opt. 38(12), 2384–2397 (1999).
[CrossRef]

E. A. McLean, H. R. Burris, and M. P. Strand, “Short pulse range gated optical imaging in turbid water,” Appl. Opt. 34(21), 4343–4351 (1995).
[CrossRef] [PubMed]

L. R. Bissonnette, “Multiple scattering Lidar equation,” Appl. Opt. 35(33), 6449–6465 (1996).
[CrossRef] [PubMed]

I. V. Yaroslavsky, A. N. Yaroslavsky, V. V. Tuchin, and H. J. Schwarzmaier, “Effect of the scattering delay on time-dependent photon migration in turbid media,” Appl. Opt. 36(25), 6529–6538 (1997).
[CrossRef]

A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, and G. Zaccanti, “Monte carlo procedure for investigating light propagation and imaging of highly scattering media,” Appl. Opt. 37(31), 7392–7400 (1998).
[CrossRef]

L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, and G. A. Isaac, “Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements,” Appl. Opt. 41(30), 6307–6324 (2002).
[CrossRef] [PubMed]

Astrophys. J. (1)

L. G. Henyey and G. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

IEEE J. Ocean Eng. (1)

B. A. Swartz, “Laser range gated underwater imaging advances,” IEEE J. Ocean Eng. 19, 722–727 (1994).

Opt. Eng. (1)

C. Tan, A. Sluzek, and G. Seet, “Model of gated imaging in turbid media,” Opt. Eng. 44, 116002 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lasers Eng. (1)

C. S. Tan, G. L. Seet, A. Sluzek, and D. M. He, “A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium,” Opt. Lasers Eng. 43(9), 995–1009 (2005).
[CrossRef]

Photochem. Photobiol. (1)

S. L. Jacques, “Light distributions from point, line and plane sources for photochemical reactions and fluorescence in turbid biological tissues,” Photochem. Photobiol. 67(1), 23–32 (1998).
[CrossRef] [PubMed]

Proc. SPIE (2)

D. M. He and G. L. Seet, ““Underwater LIDAR imaging in highly turbid waters”, Ocean Optics of Remote Sensing and Underwater Imaging,” Proc. SPIE 4488, 71–81 (2002).
[CrossRef]

J. M. Grace, P. E. Nebolsine, D. R. Snyder, N. E. Howard, and J. R. Long, “Integration of a high-speed repetitively pulsed laser with a high-speed CCD camera,” Proc. SPIE 3642, 133–141 (1999).
[CrossRef]

Other (7)

E. P. Zege, I. L. Katsev, A. S. Prikhach, and G. D. Ludbrook, “Computer simulation with regard to pulse stretching for oceanic LIDAR return”, in Proceedings of International Conference Current Problems in Optics of Natural Waters (D. S. Rozhdestvensky Optical Society), 255–260 (2001).

F. Falk, and R. Lange, “Solution method for the LIDAR equation”, in LIDAR for Remote Sensing, Richard J. Becherer and Christian Werner, eds., Proc. SPIE 1714, 303–308 (1992).

N. H. Witherspoon, and J. H. Holloway, Jr., “Feasibility testing of a range gated laser illuminated underwater imaging system”, in Ocean Optics X, Richard W. Spinrad, ed., Proc. SPIE 1302, 414 – 420 (1990).

G. D. Gilbert, and M. H. North, “Studies of optical ringing in seawater”, in Ocean Optics XII, Jules S. Jaffe, ed., Proc. SPIE 2258, 472–479 (1994).

C. S. Tan, G. L. Seet, and A. Sluzek, “Practical quantitative assessment of imaging system in turbid water using a modified fidelity index,” in Visual Information Processing XII, Z. Rahman et al., Proc. SPIE 5108, 51–62 (2003).

H. Sakai, J. Akizono, S. Yasumura, and Y. Takahashi, “Underwater laser viewing system and its application”, in Proceeding of IEEE Conference on Underwater Technology (Institute of Electrical and Electronics Engineers, New York, 161–167 (1988).

D. Curtis, Mobley, “Light and water, radiative transfer in natural water”, Academic Press, 1994.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Actual experimental set up with laser, camera and photo-detector position with the tank filled with turbid water. The upper right picture is the photo-detector measurement (time domain) without a target placed in the water tank (4ns per division scale). Bottom right picture is the RITP with a target place at 3m from the camera. The RITP is displayed on the oscillograms (10ns per division scale).

Fig. 2
Fig. 2

Images taken on various RITP regions for range gated ULIS at higher turbidity levels. The black spot on the images is due to accidental damage caused by a sharp laser beam. C is the attenuation coefficient measured by the turbidity meter. Figure 2a2c are the target image at 3m distance that are captured at different gate opening time (fixed gated duration) at C = 1.82/m. At higher turbidity level (C = 2.07), the test results are depicted in Fig. 2d2f. No quantitative (MF) or qualitative (observers eye) image enhancement is provided by tail gating for Fig. 2d to 2f. A set of control images are taken at lower turbidity level (C = 1.38/m) that has demonstrated the tail-gating concept. Note that Fig. 2c, 2f and 2i show higher backscattering effect, the uneven intensity level between right and left portion of the image are the resultant of the backscattering noise from the left side of the camera.

Fig. 3
Fig. 3

The parameters used in the Monte Carlo simulation. The input parameters consist of the source function, the Inherent Optical Properties (IOP) and the boundary/geometry of the propagation approach. The processing parameters consist of the time step with various reduction techniques, field of view of the camera/receiver, the receiver area and the target reflectance.

Fig. 4
Fig. 4

Ratio of Multiple Scattering Noises over Ballistic Photons (target signal) without convolution with input function. The attenuation coefficient can be calculated by C = scattering coefficient + absorption coefficient (fixed at 0.2/m) for all turbidity levels.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P ( t ) = P B S N ( t ) + P S ( t ) + P S M M ( t ) .
P B S N ( t ) = P D B D ( t ) + P G B D ( t ) + P D B G ( t ) + P G B G ( t ) + P D B M ( t ) + P G B M ( t )         + P M B D ( t ) + P M B G ( t ) + P M B M ( t ) ,
P s ( t ) = P D T D ( t ) + P D T G ( t ) + P G T D ( t ) + P G T G ( t ) + P M T D ( t ) + P M T G ( t ) ,
P S M M ( t ) = P D T M ( t ) + P G T M ( t ) + P M T M ( t ) .
P B S N ( t ) = i = D B D M B M P i ( t ) .
P i ( t ) = v ( t t 0 ) / 2 v t / 2 S i ( r ) P 0 ( t 2 r / v ) d r .
P i ( t ) = v ( t t 0 ) / 2 v t / 2 S i ( r ) P 0 ( t 2 r / v ) d r     f o r t ( 2 r 0 / v + t 0 + < τ > ) .
P B S N ( t ) = i = D B D M B M v ( t t 0 ) / 2 v t / 2 S i ( r ) P 0 ( t 2 r / v ) d r f o r t ( 2 r 0 / v + t 0 + < τ > ) .
P S M M ( t ) = i = D T M M T M v ( t t 0 ) / 2 v t / 2 S i ( r ) P 0 ( t 2 r / v ) d r f o r t ( 2 r 0 / v + t 0 + < τ i > ) ,
P s ( t ) = i = D T D M T G P i ' ( t ) [ P t arg e t ( ζ ) P 0 ( t ) ] .

Metrics