Abstract

We propose a hologram design process which aims at reducing aberrations in parallel three-dimensional direct laser writing applications. One principle of the approach is to minimise the diffractive power of holograms while retaining the degree of parallelisation. This reduces focal distortion caused by chromatic aberration. We address associated problems such as the zero diffraction order and aberrations induced by a potential refractive index mismatch between the immersion medium of the microscope objective and the fabrication substrate. Results from fabrication in diamond, fused silica and lithium niobate are presented.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18, 265–269 (2006).
    [CrossRef]
  2. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide Bragg gratings in bulk fused silica,” Opt. Lett. 31, 2690–2691 (2006).
    [CrossRef] [PubMed]
  3. G. Della Valle, R. Osellame and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A 11, 013001 (2009).
    [CrossRef]
  4. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17, 3531–3542 (2009).
    [CrossRef] [PubMed]
  5. M. Pospiech,M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, and U. Morgner, “Double waveguide couplers produced by simultaneous femtosecond writing,” Opt. Express 17, 3555–3563 (2009).
    [CrossRef] [PubMed]
  6. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 x 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express 18, 12136–12143 (2010).
    [CrossRef] [PubMed]
  7. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Materials 7, 543–546 (2009).
    [CrossRef]
  8. Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D Metallic Nanostructure Fabrication by Surfactant-Assisted Multiphoton-Induced Reduction,” Small 5, 1144–1148 (2009).
    [PubMed]
  9. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. v. Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513 (2009).
    [CrossRef] [PubMed]
  10. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
    [CrossRef] [PubMed]
  11. K. S. Lee, D. Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications”, Polym. Adv. Technol. 17, 72–82 (2006).
    [CrossRef]
  12. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express 12, 1908–1915 (2004).
    [CrossRef] [PubMed]
  13. J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
    [CrossRef]
  14. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31, 1705–1707 (2006).
    [CrossRef] [PubMed]
  15. M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka,“Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93, 041116 (2008).
    [CrossRef]
  16. G. Mınguez-Vega, J. Lancis, J. Caraquitena, V. Torres-Company, and P. Andres, “High spatiotemporal resolution in multifocal processing with femtosecond laser pulses,” Opt. Lett. 31, 2631–2633 (2006).
    [CrossRef] [PubMed]
  17. D. Palima and V. Ricardo Daria, “Holographic projection of arbitrary light patterns with a suppressed zero-order beam,” Appl. Opt. 46, 4197–4201 (2007).
    [CrossRef] [PubMed]
  18. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 227-246 (1972).
  19. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913–1922 (2007).
    [CrossRef] [PubMed]
  20. J. Bengtsson, “Kinoform design with an optimal-rotation-angle method,” Appl. Opt. 33, 6879-6884 (1994).
    [CrossRef] [PubMed]
  21. P. Torok, P. Varga, Z. Laczik and G. R. Booker “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12, 325–331 (1995).
    [CrossRef]
  22. M. J. Booth, M. A. A. Neil and T. Wilson, “Aberration Correction for Confocal Imaging in Refractive Index Mismatched Media,” J. Microsc. 192, 90–98 (1998).
    [CrossRef]
  23. S. Stallinga, “Light distribution close to focus in biaxially birefringent media,” J. Opt. Soc. Am. A 21, 1785-1798 (2004).
    [CrossRef]

2010 (1)

2009 (5)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Materials 7, 543–546 (2009).
[CrossRef]

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D Metallic Nanostructure Fabrication by Surfactant-Assisted Multiphoton-Induced Reduction,” Small 5, 1144–1148 (2009).
[PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. v. Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513 (2009).
[CrossRef] [PubMed]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17, 3531–3542 (2009).
[CrossRef] [PubMed]

M. Pospiech,M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, and U. Morgner, “Double waveguide couplers produced by simultaneous femtosecond writing,” Opt. Express 17, 3555–3563 (2009).
[CrossRef] [PubMed]

2008 (1)

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka,“Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93, 041116 (2008).
[CrossRef]

2007 (2)

2006 (5)

G. Mınguez-Vega, J. Lancis, J. Caraquitena, V. Torres-Company, and P. Andres, “High spatiotemporal resolution in multifocal processing with femtosecond laser pulses,” Opt. Lett. 31, 2631–2633 (2006).
[CrossRef] [PubMed]

K. S. Lee, D. Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications”, Polym. Adv. Technol. 17, 72–82 (2006).
[CrossRef]

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31, 1705–1707 (2006).
[CrossRef] [PubMed]

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide Bragg gratings in bulk fused silica,” Opt. Lett. 31, 2690–2691 (2006).
[CrossRef] [PubMed]

2005 (1)

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

2004 (2)

1998 (1)

M. J. Booth, M. A. A. Neil and T. Wilson, “Aberration Correction for Confocal Imaging in Refractive Index Mismatched Media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

1997 (1)

1995 (1)

1994 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 227-246 (1972).

Adachi, Y.

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Ams, M.

Audouard, E.

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. v. Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513 (2009).
[CrossRef] [PubMed]

Bellini, N.

Bengtsson, J.

Booker, G. R.

Booth, M. J.

M. J. Booth, M. A. A. Neil and T. Wilson, “Aberration Correction for Confocal Imaging in Refractive Index Mismatched Media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

Cao, Y. Y.

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D Metallic Nanostructure Fabrication by Surfactant-Assisted Multiphoton-Induced Reduction,” Small 5, 1144–1148 (2009).
[PubMed]

Cerullo, G.

Cheng, G.

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. v. Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513 (2009).
[CrossRef] [PubMed]

Deubel, M.

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

Di Leonardo, R.

Duan, X. M.

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D Metallic Nanostructure Fabrication by Surfactant-Assisted Multiphoton-Induced Reduction,” Small 5, 1144–1148 (2009).
[PubMed]

Emons, M.

Freymann, G.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Materials 7, 543–546 (2009).
[CrossRef]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. v. Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513 (2009).
[CrossRef] [PubMed]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 227-246 (1972).

Hasegawa, S.

Hayasaki, Y.

Hertel, I. V.

Hirao, K.

Huot, N.

Ianni, F.

Kato, J.-I.

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Kawashima, H.

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka,“Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93, 041116 (2008).
[CrossRef]

Kawata, S.

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D Metallic Nanostructure Fabrication by Surfactant-Assisted Multiphoton-Induced Reduction,” Small 5, 1144–1148 (2009).
[PubMed]

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
[CrossRef] [PubMed]

Kim, R. H.

K. S. Lee, D. Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications”, Polym. Adv. Technol. 17, 72–82 (2006).
[CrossRef]

Kuroiwa, Y.

Laczik, Z.

Lee, K. S.

K. S. Lee, D. Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications”, Polym. Adv. Technol. 17, 72–82 (2006).
[CrossRef]

Linden, S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Materials 7, 543–546 (2009).
[CrossRef]

Marshall, G. D.

Maruo, S.

Mauclair, C.

Miura, K.

Morgner, U.

Nakamura, O.

Narita, Y.

Neil, M. A. A.

M. J. Booth, M. A. A. Neil and T. Wilson, “Aberration Correction for Confocal Imaging in Refractive Index Mismatched Media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

Nishida, N.

Osellame, R.

Palima, D.

Palmer, G.

Park, S. H.

K. S. Lee, D. Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications”, Polym. Adv. Technol. 17, 72–82 (2006).
[CrossRef]

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Materials 7, 543–546 (2009).
[CrossRef]

Pospiech, M.

Ricardo Daria, V.

Rill, M. S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Materials 7, 543–546 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. v. Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513 (2009).
[CrossRef] [PubMed]

Rosenfeld, A.

Ruocco, G.

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. v. Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513 (2009).
[CrossRef] [PubMed]

Sakakura, M.

Sawano, T.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 227-246 (1972).

Shimotsuma, Y.

Stallinga, S.

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Materials 7, 543–546 (2009).
[CrossRef]

Steinmann, A.

Stoian, R.

Sun, H.-B.

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Suzuki, J.

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka,“Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93, 041116 (2008).
[CrossRef]

Takeshima, N.

Takeyasu, N.

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D Metallic Nanostructure Fabrication by Surfactant-Assisted Multiphoton-Induced Reduction,” Small 5, 1144–1148 (2009).
[PubMed]

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Tanaka, S.

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka,“Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93, 041116 (2008).
[CrossRef]

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express 12, 1908–1915 (2004).
[CrossRef] [PubMed]

Tanaka, T.

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D Metallic Nanostructure Fabrication by Surfactant-Assisted Multiphoton-Induced Reduction,” Small 5, 1144–1148 (2009).
[PubMed]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. v. Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513 (2009).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Materials 7, 543–546 (2009).
[CrossRef]

Torok, P.

Varga, P.

Wegener, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Materials 7, 543–546 (2009).
[CrossRef]

Wilson, T.

M. J. Booth, M. A. A. Neil and T. Wilson, “Aberration Correction for Confocal Imaging in Refractive Index Mismatched Media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

Wong, S.

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

Yamaji, M.

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka,“Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93, 041116 (2008).
[CrossRef]

Yang, D. Y.

K. S. Lee, D. Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications”, Polym. Adv. Technol. 17, 72–82 (2006).
[CrossRef]

Adv. Mater. (1)

S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18, 265–269 (2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka,“Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93, 041116 (2008).
[CrossRef]

J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

J. Microsc. (1)

M. J. Booth, M. A. A. Neil and T. Wilson, “Aberration Correction for Confocal Imaging in Refractive Index Mismatched Media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nature Materials (1)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Materials 7, 543–546 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Optik (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 227-246 (1972).

Polym. Adv. Technol. (1)

K. S. Lee, D. Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications”, Polym. Adv. Technol. 17, 72–82 (2006).
[CrossRef]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. v. Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513 (2009).
[CrossRef] [PubMed]

Small (1)

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D Metallic Nanostructure Fabrication by Surfactant-Assisted Multiphoton-Induced Reduction,” Small 5, 1144–1148 (2009).
[PubMed]

Other (1)

G. Della Valle, R. Osellame and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A 11, 013001 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a) Building a three-dimensional BCC lattice with parallel direct laser writing techniques. The formation of three-dimensional building blocks (right) reduces chromatic aberration-induced elongation of defects compared to the “layer by layer” technique (left). The corresponding elementary building blocks which are created with a single laser pulse are depicted in blue. b) Focusing through a refractive index mismatch: marginal rays focus at a different depth than paraxial rays – this elongates the focal spot and represents a spherical aberration.

Fig. 2
Fig. 2

Shaping a focus inside of a fabrication substrate with a diffractive optical element. f is the focal length of the objective lens.

Fig. 3
Fig. 3

a) Experimental set-up. Lens focal lengths are in mm. b) Suppression of the Zero Order. The images show 2D lattices of voxels, written into lithium niobate with single laser pulses. Left: The zero order light leads to a very pronounced defect at the centre. The defect appears elongated, which results from aberrations caused by the uneven SLM surface. Right: The intensity of the zero order has been compensated by fine-tuning amplitude and phase of the central spot. The scale bar corresponds to 10 μm.

Fig. 4
Fig. 4

Helical structures written into diamond and fused silica using single holograms; upper left corner: 3D model of the structure written into diamond; lower left box: fabrication in diamond – the images show results of holograms which were designed with and without integrated SA compensation; laser pulse energies are stated below the images; right box: helical structures written into fused silica, with and without SA correction; the scale bars correspond to 10 μm.

Fig. 5
Fig. 5

Fabrication of two- and three-dimensional crystal structures with single holograms. Left box: 14×14 array of voxels in lithium niobate. The inset shows a part of the corresponding hologram. Right box: Top view of a 7×7×4 lattice in lithium niobate, focused onto the topmost layer. The hologram used is again shown as inset. Side views of identical structures in fused silica are shown on the right. The lattices in fused silica were produced with (upper image) and without SA-corrected holograms. The scale bars correspond to 10 μm.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

V m = x 1 N exp [ i Φ ( x , y ) i Δ m ( x , y ) ] .
Δ m ( x , y ) = 2 π λ 0 f ( x x ^ m + y y ^ m ) + z ^ m [ D ( x , y ) + S A ( x , y ) ] ,
D n 1 ( r ) = 2 π λ 0 f f 2 n 1 2 r 2 ,
S A ( r ) = 2 π λ 0 f [ f 2 n 2 2 r 2 f 2 n 1 2 r 2 ] = D n 1 ( r ) D n 2 ( r ) ,
Φ ( x , y ) = arg [ m exp [ i Δ m ( x , y ) ] V m | V m | w m ] .
w m k = w m k 1 | V m k 1 | m | V m k 1 | ,
D n 1 ( ρ ) = 2 π λ 0 N A n 1 2 N A 2 ρ 2 ,
S A ( ρ ) = 2 π λ 0 N A [ n 2 2 N A 2 ρ 2 n 1 2 N A 2 ρ 2 ] .
S ^ A ( r ) = S A ( r ) S A ( r ) , D n 2 ( r ) D n 2 ( r ) , D n 2 ( r ) D n 2 ( r ) .
S A ( r ) , D n 2 ( r ) = 1 N r S A ( r ) D n 2 ( r ) .
S A ( r ) = S A ( r ) 1 N r S A ( r ) ,
D n 2 ( r ) = D n 2 ( r ) 1 N r D n 2 ( r ) .

Metrics