Abstract
A threestate model for calculating the cross section of laserinduced dipolequadrupole collisional energy transfer in SrCa system is presented. The motion equations for the probability amplitudes of the three intermediate states are obtained. The expression of the cross section is derived. Various factors including field intensity, relative speed, system temperature which influence the collisional cross section are discussed to illustrate the features of the dipolequadrupole laserinduced collisional energy transfer (LICET)process. Calculating results show that the peak of the LICET profiles moves to the red, the tuning range of the profiles obviously becomes narrower with the laser field intensity increasing and a cross section of 1.25 × 10^{−13}cm^{2} at a laser intensity of 8.29 × 10^{9}W/cm^{2} is obtained. Our results indicate that dipolequadrupole LICET process can be the effective way to transfer energy selectively from a storage state of arbitrary parity to a target state of arbitrary parity.
© 2010 OSA
Full Article  PDF ArticleOSA Recommended Articles
Zhenzhong Lu, Deying Chen, Rongwei Fan, and Yuanqin Xia
J. Opt. Soc. Am. B 28(10) 24132417 (2011)
W. R. Green, M. D. Wright, J. Lukasik, J. F. Young, and S. E. Harris
Opt. Lett. 4(9) 265267 (1979)
R. A. Lilly
J. Opt. Soc. Am. 62(9) 10231026 (1972)
References
 View by:
 Article Order
 
 Year
 
 Author
 
 Publication
 R. W. Falcone, R. W. Green, J. White, J. Young, and S. Harris, “Observation of laserinduced inelastic collisions,” Phys. Rev. A 15(3), 1333–1335 (1977).
[Crossref]  A. Debarre, “Highresolution study of lightinduced collisional energy transfer in NaCa mixture,” J. Phys. B 16(3), 431–436 (1983).
[Crossref]  C. Brechnignac, Ph. Cahuzac, and P. E. Toschek, “Highresolution studies on laserinduced collisionalenergytransfer profiles,” Phys. Rev. A 21(6), 1969–1974 (1980).
[Crossref]  F. Dorsch, S. Geltman, and P. E. Toschek, “Laserinduced collisionalenergy transfer in thermal collisions of lithium and strontium,” Phys. Rev. A 37(7), 2441–2447 (1988).
[Crossref] [PubMed]  B. Cheron and H. Lemery, “Observation of laser induced collisional energy transfer in a rubidiumpotassium mixture,” Opt. Commun. 42(2), 109–112 (1982).
[Crossref]  D. Z. Zhang, B. Nikolaus, and P. E. Toschek, Appl. Phys. B 28, 195 (1981).
 M. Matera, M. Mazzoni, R. Buffa, S. Cavalieri, and E. Arimondo, “Farwing study of laserinduced collisional energy transfer,” Phys. Rev. A 36(3), 1471–1473 (1987).
[Crossref] [PubMed]  S. Geltman, “Calculations on laserinduced collisional energy transfer,” Phys. Rev. A 45(7), 4792–4798 (1992).
[Crossref] [PubMed]  S. E. Harris and J. White, “Numerical analysis of laser induced inelastic collisions,” IEEE J. Quantum Electron. 13(12), 972–978 (1977).
[Crossref]  A. Gallagher and T. Holstein, “Collisioninduced absorption in atomic electronic transitions,” Phys. Rev. A 16(6), 2413–2431 (1977).
[Crossref]  A. Bambini and P. R. Berman, “Quasistatic wing behavior of collisionalradiative line profiles,” Phys. Rev. A 35(9), 3753–3757 (1987).
[Crossref] [PubMed]  A. Agresti, P. R. Berman, A. Bambini, and A. Stefanel, “Analysis of the farwing behavior in the spectrum of the lightinduced collisionalenergytransfer process,” Phys. Rev. A 38(5), 2259–2273 (1988).
[Crossref] [PubMed]  S. Geltman, “Calculations on laserinduced collisional energy transfer,” Phys. Rev. A 45(7), 4792–4798 (1992).
[Crossref] [PubMed]  A. Bambini and S. Geltman, “Theory of strongfield lightinduced collisional energy transfer in Eu and Sr,” Phys. Rev. A 50(6), 5081–5091 (1994).
[Crossref] [PubMed]  C. Deying, W. Qi, and M. Zuguang, “Fourlevel model of laserinduced collisional energy transfer,” Acta Opt. Sin. 16, 1653–1655 (1996).
 C. Deying, W. Qi, and M. Zuguang, “Numerical calculation of laserinduced collisional energy transfer in EuSr,” Sci. China Ser. A 27, 449 (1997).
 Z. Hongying, C. Deying, L. Zhenzhong, F. Rongwei, and X. Yuanqin, “Numerical calculation of laserinduced collisional energy transfer in BaSr system,” Acta Phys. Sin. 57, 7600–7605 (2008).

W. R. Green, M. D. Wright, J. Lukasik, J. F. Young, and S. E. Harris, “Observation of a laserinduced dipolequadrupole collision,” Opt. Lett. 4(9), 265–267 (1979).
[Crossref] [PubMed] 
J. C. White, “Observation of dipole  quadrupole radiative collisional fluorescence,” Opt. Lett. 5(6), 239–241 (1980).
[Crossref] [PubMed]  J. O. Hirschfelder and W. J. Meath, “The nature of intermolecular forces,” Adv. Chem. Phys. 12, 1 (1967).
 M. E. Rose, “The Electrostatic Interaction of Two Arbitrary Charge Distributions,” J. Math. Phys. 37, 215–222 (1958).
 Z. H. C. Deying, L. Zhenzhong, X. Yuanqin, and F. Rongwei, “Impacts of Relative velocity distribution between two colliding atoms on laserinduced collisional energy transfer,” Chin. J. Lasers 35, 0077–0080 (2008).
 A. Bambini, M. Matera, A. Agresti, and M. Bianconi, “Strongfield effects on lightinduced collisional energy transfer,” Phys. Rev. A 42(11), 6629–6640 (1990).
[Crossref] [PubMed]
2008 (2)
Z. Hongying, C. Deying, L. Zhenzhong, F. Rongwei, and X. Yuanqin, “Numerical calculation of laserinduced collisional energy transfer in BaSr system,” Acta Phys. Sin. 57, 7600–7605 (2008).
Z. H. C. Deying, L. Zhenzhong, X. Yuanqin, and F. Rongwei, “Impacts of Relative velocity distribution between two colliding atoms on laserinduced collisional energy transfer,” Chin. J. Lasers 35, 0077–0080 (2008).
1997 (1)
C. Deying, W. Qi, and M. Zuguang, “Numerical calculation of laserinduced collisional energy transfer in EuSr,” Sci. China Ser. A 27, 449 (1997).
1996 (1)
C. Deying, W. Qi, and M. Zuguang, “Fourlevel model of laserinduced collisional energy transfer,” Acta Opt. Sin. 16, 1653–1655 (1996).
1994 (1)
A. Bambini and S. Geltman, “Theory of strongfield lightinduced collisional energy transfer in Eu and Sr,” Phys. Rev. A 50(6), 5081–5091 (1994).
[Crossref]
[PubMed]
1992 (2)
S. Geltman, “Calculations on laserinduced collisional energy transfer,” Phys. Rev. A 45(7), 4792–4798 (1992).
[Crossref]
[PubMed]
S. Geltman, “Calculations on laserinduced collisional energy transfer,” Phys. Rev. A 45(7), 4792–4798 (1992).
[Crossref]
[PubMed]
1990 (1)
A. Bambini, M. Matera, A. Agresti, and M. Bianconi, “Strongfield effects on lightinduced collisional energy transfer,” Phys. Rev. A 42(11), 6629–6640 (1990).
[Crossref]
[PubMed]
1988 (2)
F. Dorsch, S. Geltman, and P. E. Toschek, “Laserinduced collisionalenergy transfer in thermal collisions of lithium and strontium,” Phys. Rev. A 37(7), 2441–2447 (1988).
[Crossref]
[PubMed]
A. Agresti, P. R. Berman, A. Bambini, and A. Stefanel, “Analysis of the farwing behavior in the spectrum of the lightinduced collisionalenergytransfer process,” Phys. Rev. A 38(5), 2259–2273 (1988).
[Crossref]
[PubMed]
1987 (2)
A. Bambini and P. R. Berman, “Quasistatic wing behavior of collisionalradiative line profiles,” Phys. Rev. A 35(9), 3753–3757 (1987).
[Crossref]
[PubMed]
M. Matera, M. Mazzoni, R. Buffa, S. Cavalieri, and E. Arimondo, “Farwing study of laserinduced collisional energy transfer,” Phys. Rev. A 36(3), 1471–1473 (1987).
[Crossref]
[PubMed]
1983 (1)
A. Debarre, “Highresolution study of lightinduced collisional energy transfer in NaCa mixture,” J. Phys. B 16(3), 431–436 (1983).
[Crossref]
1982 (1)
B. Cheron and H. Lemery, “Observation of laser induced collisional energy transfer in a rubidiumpotassium mixture,” Opt. Commun. 42(2), 109–112 (1982).
[Crossref]
1981 (1)
D. Z. Zhang, B. Nikolaus, and P. E. Toschek, Appl. Phys. B 28, 195 (1981).
1980 (2)
C. Brechnignac, Ph. Cahuzac, and P. E. Toschek, “Highresolution studies on laserinduced collisionalenergytransfer profiles,” Phys. Rev. A 21(6), 1969–1974 (1980).
[Crossref]
J. C. White, “Observation of dipole  quadrupole radiative collisional fluorescence,” Opt. Lett. 5(6), 239–241 (1980).
[Crossref]
[PubMed]
1979 (1)
W. R. Green, M. D. Wright, J. Lukasik, J. F. Young, and S. E. Harris, “Observation of a laserinduced dipolequadrupole collision,” Opt. Lett. 4(9), 265–267 (1979).
[Crossref]
[PubMed]
1977 (3)
R. W. Falcone, R. W. Green, J. White, J. Young, and S. Harris, “Observation of laserinduced inelastic collisions,” Phys. Rev. A 15(3), 1333–1335 (1977).
[Crossref]
S. E. Harris and J. White, “Numerical analysis of laser induced inelastic collisions,” IEEE J. Quantum Electron. 13(12), 972–978 (1977).
[Crossref]
A. Gallagher and T. Holstein, “Collisioninduced absorption in atomic electronic transitions,” Phys. Rev. A 16(6), 2413–2431 (1977).
[Crossref]
1967 (1)
J. O. Hirschfelder and W. J. Meath, “The nature of intermolecular forces,” Adv. Chem. Phys. 12, 1 (1967).
1958 (1)
M. E. Rose, “The Electrostatic Interaction of Two Arbitrary Charge Distributions,” J. Math. Phys. 37, 215–222 (1958).
Agresti, A.
A. Bambini, M. Matera, A. Agresti, and M. Bianconi, “Strongfield effects on lightinduced collisional energy transfer,” Phys. Rev. A 42(11), 6629–6640 (1990).
[Crossref]
[PubMed]
A. Agresti, P. R. Berman, A. Bambini, and A. Stefanel, “Analysis of the farwing behavior in the spectrum of the lightinduced collisionalenergytransfer process,” Phys. Rev. A 38(5), 2259–2273 (1988).
[Crossref]
[PubMed]
Arimondo, E.
M. Matera, M. Mazzoni, R. Buffa, S. Cavalieri, and E. Arimondo, “Farwing study of laserinduced collisional energy transfer,” Phys. Rev. A 36(3), 1471–1473 (1987).
[Crossref]
[PubMed]
Bambini, A.
A. Bambini and S. Geltman, “Theory of strongfield lightinduced collisional energy transfer in Eu and Sr,” Phys. Rev. A 50(6), 5081–5091 (1994).
[Crossref]
[PubMed]
A. Bambini, M. Matera, A. Agresti, and M. Bianconi, “Strongfield effects on lightinduced collisional energy transfer,” Phys. Rev. A 42(11), 6629–6640 (1990).
[Crossref]
[PubMed]
A. Agresti, P. R. Berman, A. Bambini, and A. Stefanel, “Analysis of the farwing behavior in the spectrum of the lightinduced collisionalenergytransfer process,” Phys. Rev. A 38(5), 2259–2273 (1988).
[Crossref]
[PubMed]
A. Bambini and P. R. Berman, “Quasistatic wing behavior of collisionalradiative line profiles,” Phys. Rev. A 35(9), 3753–3757 (1987).
[Crossref]
[PubMed]
Berman, P. R.
A. Agresti, P. R. Berman, A. Bambini, and A. Stefanel, “Analysis of the farwing behavior in the spectrum of the lightinduced collisionalenergytransfer process,” Phys. Rev. A 38(5), 2259–2273 (1988).
[Crossref]
[PubMed]
A. Bambini and P. R. Berman, “Quasistatic wing behavior of collisionalradiative line profiles,” Phys. Rev. A 35(9), 3753–3757 (1987).
[Crossref]
[PubMed]
Bianconi, M.
A. Bambini, M. Matera, A. Agresti, and M. Bianconi, “Strongfield effects on lightinduced collisional energy transfer,” Phys. Rev. A 42(11), 6629–6640 (1990).
[Crossref]
[PubMed]
Brechnignac, C.
C. Brechnignac, Ph. Cahuzac, and P. E. Toschek, “Highresolution studies on laserinduced collisionalenergytransfer profiles,” Phys. Rev. A 21(6), 1969–1974 (1980).
[Crossref]
Buffa, R.
M. Matera, M. Mazzoni, R. Buffa, S. Cavalieri, and E. Arimondo, “Farwing study of laserinduced collisional energy transfer,” Phys. Rev. A 36(3), 1471–1473 (1987).
[Crossref]
[PubMed]
Cahuzac, Ph.
C. Brechnignac, Ph. Cahuzac, and P. E. Toschek, “Highresolution studies on laserinduced collisionalenergytransfer profiles,” Phys. Rev. A 21(6), 1969–1974 (1980).
[Crossref]
Cavalieri, S.
M. Matera, M. Mazzoni, R. Buffa, S. Cavalieri, and E. Arimondo, “Farwing study of laserinduced collisional energy transfer,” Phys. Rev. A 36(3), 1471–1473 (1987).
[Crossref]
[PubMed]
Cheron, B.
B. Cheron and H. Lemery, “Observation of laser induced collisional energy transfer in a rubidiumpotassium mixture,” Opt. Commun. 42(2), 109–112 (1982).
[Crossref]
Debarre, A.
A. Debarre, “Highresolution study of lightinduced collisional energy transfer in NaCa mixture,” J. Phys. B 16(3), 431–436 (1983).
[Crossref]
Deying, C.
Z. Hongying, C. Deying, L. Zhenzhong, F. Rongwei, and X. Yuanqin, “Numerical calculation of laserinduced collisional energy transfer in BaSr system,” Acta Phys. Sin. 57, 7600–7605 (2008).
C. Deying, W. Qi, and M. Zuguang, “Numerical calculation of laserinduced collisional energy transfer in EuSr,” Sci. China Ser. A 27, 449 (1997).
C. Deying, W. Qi, and M. Zuguang, “Fourlevel model of laserinduced collisional energy transfer,” Acta Opt. Sin. 16, 1653–1655 (1996).
Deying, Z. H. C.
Z. H. C. Deying, L. Zhenzhong, X. Yuanqin, and F. Rongwei, “Impacts of Relative velocity distribution between two colliding atoms on laserinduced collisional energy transfer,” Chin. J. Lasers 35, 0077–0080 (2008).
Dorsch, F.
F. Dorsch, S. Geltman, and P. E. Toschek, “Laserinduced collisionalenergy transfer in thermal collisions of lithium and strontium,” Phys. Rev. A 37(7), 2441–2447 (1988).
[Crossref]
[PubMed]
Falcone, R. W.
R. W. Falcone, R. W. Green, J. White, J. Young, and S. Harris, “Observation of laserinduced inelastic collisions,” Phys. Rev. A 15(3), 1333–1335 (1977).
[Crossref]
Gallagher, A.
A. Gallagher and T. Holstein, “Collisioninduced absorption in atomic electronic transitions,” Phys. Rev. A 16(6), 2413–2431 (1977).
[Crossref]
Geltman, S.
A. Bambini and S. Geltman, “Theory of strongfield lightinduced collisional energy transfer in Eu and Sr,” Phys. Rev. A 50(6), 5081–5091 (1994).
[Crossref]
[PubMed]
S. Geltman, “Calculations on laserinduced collisional energy transfer,” Phys. Rev. A 45(7), 4792–4798 (1992).
[Crossref]
[PubMed]
S. Geltman, “Calculations on laserinduced collisional energy transfer,” Phys. Rev. A 45(7), 4792–4798 (1992).
[Crossref]
[PubMed]
F. Dorsch, S. Geltman, and P. E. Toschek, “Laserinduced collisionalenergy transfer in thermal collisions of lithium and strontium,” Phys. Rev. A 37(7), 2441–2447 (1988).
[Crossref]
[PubMed]
Green, R. W.
R. W. Falcone, R. W. Green, J. White, J. Young, and S. Harris, “Observation of laserinduced inelastic collisions,” Phys. Rev. A 15(3), 1333–1335 (1977).
[Crossref]
Green, W. R.
W. R. Green, M. D. Wright, J. Lukasik, J. F. Young, and S. E. Harris, “Observation of a laserinduced dipolequadrupole collision,” Opt. Lett. 4(9), 265–267 (1979).
[Crossref]
[PubMed]
Harris, S.
R. W. Falcone, R. W. Green, J. White, J. Young, and S. Harris, “Observation of laserinduced inelastic collisions,” Phys. Rev. A 15(3), 1333–1335 (1977).
[Crossref]
Harris, S. E.
W. R. Green, M. D. Wright, J. Lukasik, J. F. Young, and S. E. Harris, “Observation of a laserinduced dipolequadrupole collision,” Opt. Lett. 4(9), 265–267 (1979).
[Crossref]
[PubMed]
S. E. Harris and J. White, “Numerical analysis of laser induced inelastic collisions,” IEEE J. Quantum Electron. 13(12), 972–978 (1977).
[Crossref]
Hirschfelder, J. O.
J. O. Hirschfelder and W. J. Meath, “The nature of intermolecular forces,” Adv. Chem. Phys. 12, 1 (1967).
Holstein, T.
A. Gallagher and T. Holstein, “Collisioninduced absorption in atomic electronic transitions,” Phys. Rev. A 16(6), 2413–2431 (1977).
[Crossref]
Hongying, Z.
Z. Hongying, C. Deying, L. Zhenzhong, F. Rongwei, and X. Yuanqin, “Numerical calculation of laserinduced collisional energy transfer in BaSr system,” Acta Phys. Sin. 57, 7600–7605 (2008).
Lemery, H.
B. Cheron and H. Lemery, “Observation of laser induced collisional energy transfer in a rubidiumpotassium mixture,” Opt. Commun. 42(2), 109–112 (1982).
[Crossref]
Lukasik, J.
W. R. Green, M. D. Wright, J. Lukasik, J. F. Young, and S. E. Harris, “Observation of a laserinduced dipolequadrupole collision,” Opt. Lett. 4(9), 265–267 (1979).
[Crossref]
[PubMed]
Matera, M.
A. Bambini, M. Matera, A. Agresti, and M. Bianconi, “Strongfield effects on lightinduced collisional energy transfer,” Phys. Rev. A 42(11), 6629–6640 (1990).
[Crossref]
[PubMed]
M. Matera, M. Mazzoni, R. Buffa, S. Cavalieri, and E. Arimondo, “Farwing study of laserinduced collisional energy transfer,” Phys. Rev. A 36(3), 1471–1473 (1987).
[Crossref]
[PubMed]
Mazzoni, M.
M. Matera, M. Mazzoni, R. Buffa, S. Cavalieri, and E. Arimondo, “Farwing study of laserinduced collisional energy transfer,” Phys. Rev. A 36(3), 1471–1473 (1987).
[Crossref]
[PubMed]
Meath, W. J.
J. O. Hirschfelder and W. J. Meath, “The nature of intermolecular forces,” Adv. Chem. Phys. 12, 1 (1967).
Nikolaus, B.
D. Z. Zhang, B. Nikolaus, and P. E. Toschek, Appl. Phys. B 28, 195 (1981).
Qi, W.
C. Deying, W. Qi, and M. Zuguang, “Numerical calculation of laserinduced collisional energy transfer in EuSr,” Sci. China Ser. A 27, 449 (1997).
C. Deying, W. Qi, and M. Zuguang, “Fourlevel model of laserinduced collisional energy transfer,” Acta Opt. Sin. 16, 1653–1655 (1996).
Rongwei, F.
Z. Hongying, C. Deying, L. Zhenzhong, F. Rongwei, and X. Yuanqin, “Numerical calculation of laserinduced collisional energy transfer in BaSr system,” Acta Phys. Sin. 57, 7600–7605 (2008).
Z. H. C. Deying, L. Zhenzhong, X. Yuanqin, and F. Rongwei, “Impacts of Relative velocity distribution between two colliding atoms on laserinduced collisional energy transfer,” Chin. J. Lasers 35, 0077–0080 (2008).
Rose, M. E.
M. E. Rose, “The Electrostatic Interaction of Two Arbitrary Charge Distributions,” J. Math. Phys. 37, 215–222 (1958).
Stefanel, A.
A. Agresti, P. R. Berman, A. Bambini, and A. Stefanel, “Analysis of the farwing behavior in the spectrum of the lightinduced collisionalenergytransfer process,” Phys. Rev. A 38(5), 2259–2273 (1988).
[Crossref]
[PubMed]
Toschek, P. E.
F. Dorsch, S. Geltman, and P. E. Toschek, “Laserinduced collisionalenergy transfer in thermal collisions of lithium and strontium,” Phys. Rev. A 37(7), 2441–2447 (1988).
[Crossref]
[PubMed]
D. Z. Zhang, B. Nikolaus, and P. E. Toschek, Appl. Phys. B 28, 195 (1981).
C. Brechnignac, Ph. Cahuzac, and P. E. Toschek, “Highresolution studies on laserinduced collisionalenergytransfer profiles,” Phys. Rev. A 21(6), 1969–1974 (1980).
[Crossref]
White, J.
R. W. Falcone, R. W. Green, J. White, J. Young, and S. Harris, “Observation of laserinduced inelastic collisions,” Phys. Rev. A 15(3), 1333–1335 (1977).
[Crossref]
S. E. Harris and J. White, “Numerical analysis of laser induced inelastic collisions,” IEEE J. Quantum Electron. 13(12), 972–978 (1977).
[Crossref]
White, J. C.
J. C. White, “Observation of dipole  quadrupole radiative collisional fluorescence,” Opt. Lett. 5(6), 239–241 (1980).
[Crossref]
[PubMed]
Wright, M. D.
W. R. Green, M. D. Wright, J. Lukasik, J. F. Young, and S. E. Harris, “Observation of a laserinduced dipolequadrupole collision,” Opt. Lett. 4(9), 265–267 (1979).
[Crossref]
[PubMed]
Young, J.
R. W. Falcone, R. W. Green, J. White, J. Young, and S. Harris, “Observation of laserinduced inelastic collisions,” Phys. Rev. A 15(3), 1333–1335 (1977).
[Crossref]
Young, J. F.
W. R. Green, M. D. Wright, J. Lukasik, J. F. Young, and S. E. Harris, “Observation of a laserinduced dipolequadrupole collision,” Opt. Lett. 4(9), 265–267 (1979).
[Crossref]
[PubMed]
Yuanqin, X.
Z. Hongying, C. Deying, L. Zhenzhong, F. Rongwei, and X. Yuanqin, “Numerical calculation of laserinduced collisional energy transfer in BaSr system,” Acta Phys. Sin. 57, 7600–7605 (2008).
Z. H. C. Deying, L. Zhenzhong, X. Yuanqin, and F. Rongwei, “Impacts of Relative velocity distribution between two colliding atoms on laserinduced collisional energy transfer,” Chin. J. Lasers 35, 0077–0080 (2008).
Zhang, D. Z.
D. Z. Zhang, B. Nikolaus, and P. E. Toschek, Appl. Phys. B 28, 195 (1981).
Zhenzhong, L.
Z. H. C. Deying, L. Zhenzhong, X. Yuanqin, and F. Rongwei, “Impacts of Relative velocity distribution between two colliding atoms on laserinduced collisional energy transfer,” Chin. J. Lasers 35, 0077–0080 (2008).
Z. Hongying, C. Deying, L. Zhenzhong, F. Rongwei, and X. Yuanqin, “Numerical calculation of laserinduced collisional energy transfer in BaSr system,” Acta Phys. Sin. 57, 7600–7605 (2008).
Zuguang, M.
C. Deying, W. Qi, and M. Zuguang, “Numerical calculation of laserinduced collisional energy transfer in EuSr,” Sci. China Ser. A 27, 449 (1997).
C. Deying, W. Qi, and M. Zuguang, “Fourlevel model of laserinduced collisional energy transfer,” Acta Opt. Sin. 16, 1653–1655 (1996).
Acta Opt. Sin. (1)
C. Deying, W. Qi, and M. Zuguang, “Fourlevel model of laserinduced collisional energy transfer,” Acta Opt. Sin. 16, 1653–1655 (1996).
Acta Phys. Sin. (1)
Z. Hongying, C. Deying, L. Zhenzhong, F. Rongwei, and X. Yuanqin, “Numerical calculation of laserinduced collisional energy transfer in BaSr system,” Acta Phys. Sin. 57, 7600–7605 (2008).
Adv. Chem. Phys. (1)
J. O. Hirschfelder and W. J. Meath, “The nature of intermolecular forces,” Adv. Chem. Phys. 12, 1 (1967).
Appl. Phys. B (1)
D. Z. Zhang, B. Nikolaus, and P. E. Toschek, Appl. Phys. B 28, 195 (1981).
Chin. J. Lasers (1)
Z. H. C. Deying, L. Zhenzhong, X. Yuanqin, and F. Rongwei, “Impacts of Relative velocity distribution between two colliding atoms on laserinduced collisional energy transfer,” Chin. J. Lasers 35, 0077–0080 (2008).
IEEE J. Quantum Electron. (1)
S. E. Harris and J. White, “Numerical analysis of laser induced inelastic collisions,” IEEE J. Quantum Electron. 13(12), 972–978 (1977).
[Crossref]
J. Math. Phys. (1)
M. E. Rose, “The Electrostatic Interaction of Two Arbitrary Charge Distributions,” J. Math. Phys. 37, 215–222 (1958).
J. Phys. B (1)
A. Debarre, “Highresolution study of lightinduced collisional energy transfer in NaCa mixture,” J. Phys. B 16(3), 431–436 (1983).
[Crossref]
Opt. Commun. (1)
B. Cheron and H. Lemery, “Observation of laser induced collisional energy transfer in a rubidiumpotassium mixture,” Opt. Commun. 42(2), 109–112 (1982).
[Crossref]
Opt. Lett. (2)
W. R. Green, M. D. Wright, J. Lukasik, J. F. Young, and S. E. Harris, “Observation of a laserinduced dipolequadrupole collision,” Opt. Lett. 4(9), 265–267 (1979).
[Crossref]
[PubMed]
J. C. White, “Observation of dipole  quadrupole radiative collisional fluorescence,” Opt. Lett. 5(6), 239–241 (1980).
[Crossref]
[PubMed]
Phys. Rev. A (11)
M. Matera, M. Mazzoni, R. Buffa, S. Cavalieri, and E. Arimondo, “Farwing study of laserinduced collisional energy transfer,” Phys. Rev. A 36(3), 1471–1473 (1987).
[Crossref]
[PubMed]
S. Geltman, “Calculations on laserinduced collisional energy transfer,” Phys. Rev. A 45(7), 4792–4798 (1992).
[Crossref]
[PubMed]
R. W. Falcone, R. W. Green, J. White, J. Young, and S. Harris, “Observation of laserinduced inelastic collisions,” Phys. Rev. A 15(3), 1333–1335 (1977).
[Crossref]
C. Brechnignac, Ph. Cahuzac, and P. E. Toschek, “Highresolution studies on laserinduced collisionalenergytransfer profiles,” Phys. Rev. A 21(6), 1969–1974 (1980).
[Crossref]
F. Dorsch, S. Geltman, and P. E. Toschek, “Laserinduced collisionalenergy transfer in thermal collisions of lithium and strontium,” Phys. Rev. A 37(7), 2441–2447 (1988).
[Crossref]
[PubMed]
A. Gallagher and T. Holstein, “Collisioninduced absorption in atomic electronic transitions,” Phys. Rev. A 16(6), 2413–2431 (1977).
[Crossref]
A. Bambini and P. R. Berman, “Quasistatic wing behavior of collisionalradiative line profiles,” Phys. Rev. A 35(9), 3753–3757 (1987).
[Crossref]
[PubMed]
A. Agresti, P. R. Berman, A. Bambini, and A. Stefanel, “Analysis of the farwing behavior in the spectrum of the lightinduced collisionalenergytransfer process,” Phys. Rev. A 38(5), 2259–2273 (1988).
[Crossref]
[PubMed]
S. Geltman, “Calculations on laserinduced collisional energy transfer,” Phys. Rev. A 45(7), 4792–4798 (1992).
[Crossref]
[PubMed]
A. Bambini and S. Geltman, “Theory of strongfield lightinduced collisional energy transfer in Eu and Sr,” Phys. Rev. A 50(6), 5081–5091 (1994).
[Crossref]
[PubMed]
A. Bambini, M. Matera, A. Agresti, and M. Bianconi, “Strongfield effects on lightinduced collisional energy transfer,” Phys. Rev. A 42(11), 6629–6640 (1990).
[Crossref]
[PubMed]
Sci. China Ser. A (1)
C. Deying, W. Qi, and M. Zuguang, “Numerical calculation of laserinduced collisional energy transfer in EuSr,” Sci. China Ser. A 27, 449 (1997).
Cited By
OSA participates in Crossref's CitedBy Linking service. Citing articles from OSA journals and other participating publishers are listed here.
Alert me when this article is cited.
Figures (13)
Simplified energy levels for a LICET process.
Coordinate system formed by two colliding atoms.
The LICET transition in SrCa system. The energy levels in the figure are given in cm^{−1}.
The time dependence of laserinduced collision transition probability 
Laserinduced collision transition probability 
LICET spectrums for SrCa system at various transfer laser intensities in weak field.
LICET spectrums for the SrCa system at various transfer laser intensities in strong field.
Schematic adiabatic quasimolecular potential for the SrCa system.
Shift of the peak cross section as a function of transfer laser intensity for the SrCa system in strong field.
The peak cross section as a function of transfer laser intensity for the SrCa system.
LICET cross section vs. the laser detuning at various relative speed. The laser intensity is fixed at 10^{8} W/cm^{2}.
Comparison of LICET spectrums with velocity distribution considered (solid line) and not (dashed line) at a transfer laser intensity of 0.133MW/cm^{2}
The LICET spectrum for the SrCa system at different temperatures with the transfer laser field intensity of 83MW/cm^{2}
Equations (21)
Equations on this page are rendered with MathJax. Learn more.