Abstract

VLSI compatible optical waveguides on silicon are currently of particular interest in order to integrate optical elements onto silicon chips, and for possible replacements of electrical cross-chip/inter-core interconnects. Here we present simulation and experimental verification of a hybrid plasmon/dielectric, single-mode, single-polarization waveguide for silicon-on-insulator wafers. Its fabrication is compatible with VLSI processing techniques, and it possesses desirable properties such as the absence of birefringence and low sensitivity to surface roughness and metallic losses. The waveguide structure naturally forms an MOS capacitor, possibly useful for active device integration. Simulations predict very long propagation lengths of millimeter scale with micron scale confinement, or sub-micron scale confinement with propagation lengths still in excess of 100 microns. The waveguide may be tuned continuously between these states using standard VLSI processing. Extremely long propagation lengths have been simulated: one configuration presented here has a simulated propagation length of 34 cm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Young, E. Mohammed, J. Liao, A. Kern, S. Palermo, B. Block, M. Reshotko, and P. Chang, “Optical i/o technology to prevent multi/many-core bottlenecks” Proc. of IEEE International Solid-State Circuits Conference 2009, 28.1 (2009).
  2. A. Rickman, G. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol. 12, 1771–1776 (1994).
    [CrossRef]
  3. J. Schmidtchen, A. Splett, B. Schuppert, and K. Petermann, “Low-loss single-mode optical waveguides with large cross section in silicon-on-insulator,” Electron. Lett. 27, 1486–1488 (1991).
    [CrossRef]
  4. U. Fischer, T. Zinke, and K. Petermann, “0.1 db/cm waveguide losses in single-mode soi rib waveguides,” IEEE Photon. Technol. Lett. 8, 647–648 (1996).
    [CrossRef]
  5. L. Vivien, F. Grillot, E. Cassan, D. Pascal, S. Lardenois, A. Lupu, S. Laval, M. Heitzmann, and J. Fdli, “Comparison between strip and rib soi microwaveguides for intra-chip light distribution,” Opt. Mater. 27, 756–762 (2004).
    [CrossRef]
  6. F. Gao, Y. Wang, G. Cao, X. Jia, and F. Zhang, “Improvement of sidewall surface roughness in silicon-on-insulator rib waveguides,” Appl. Phys. B 81, 691–694 (2005).
    [CrossRef]
  7. L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210, 43–49 (2002).
    [CrossRef]
  8. X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-cmos modulator integrated with driver,” Opt. Express 18, 3059–3070 (2010).
    [CrossRef] [PubMed]
  9. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
    [CrossRef]
  10. R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett. 20, 1473–1475 (2005).
    [CrossRef]
  11. R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431 (2005).
    [CrossRef]
  12. J. Dionne, L. Sweatlock, and H. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
    [CrossRef]
  13. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511– 2521 (2007).
    [CrossRef]
  14. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal groves,” Phys. Rev. Lett. 95, 046802(2005).
    [CrossRef] [PubMed]
  15. D. Pile and D. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
    [CrossRef] [PubMed]
  16. D. Arbel and M. Orenstein, “W-shaped plasmon waveguide for silicon based plasmonic modulator,” in “Proceedings of IEEE LEOS Annual Meeting Conf.”, (2006), pp. 262–263.
  17. P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, “Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor,” Opt. Express 14, 7063–7072 (2006).
    [CrossRef] [PubMed]
  18. J. T. Kim, J. J. Ju, S. Park, M. su Kim, S. K. Park, and S.-Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18, 2808–2813 (2010).
    [CrossRef] [PubMed]
  19. F. Kou and T. Tamir, “Range extension of surface plasmons by dielectric layers,” Opt. Lett. 12, 367–369 (1987).
    [CrossRef] [PubMed]
  20. R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
    [CrossRef]
  21. N.-N. Feng, M. L. Brongersma, and L. D. Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 um,” IEEE J. Sel. Top. Quantum Electron. 43, 479–485 (2007).
    [CrossRef]
  22. Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3d photonic integration,” Opt. Express 17, 21320–21325 (2009).
    [CrossRef] [PubMed]
  23. R. Oulton, V. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
    [CrossRef]
  24. K. Sasaki, H. Kawagishi, and Y. Ishijima, “Phase-matched second harmonic generation by a surface polariton along a silver layer on a slab-type optical waveguide,” Appl. Phys. Lett. 47, 783–785 (1985).
    [CrossRef]
  25. J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
    [CrossRef]
  26. P. Berini, “Air gaps in metal stripe waveguides supporting long-range surface plasmon polaritons,” J. Appl. Phys. 102, 033112 (2007).
    [CrossRef]
  27. J. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14, 12409–12418 (2006).
    [CrossRef] [PubMed]
  28. R. Adato and J. Guo, “Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers,” J. Appl. Phys. 105, 034306 (2009).
    [CrossRef]
  29. A. Degiron, C. Dellagiacoma, J. G. McIlhargey, G. Shvets, O. J. F. Martin, and D. R. Smith, “Simulations of hybrid long-range plasmon modes with application to 90 bends,” Opt. Lett. 32, 2354–2356 (2007).
    [CrossRef] [PubMed]
  30. G. Stegman and J. J. Burke, “Effects of gaps on long range surface plasmon polaritons,” J. Appl. Phys. 54, 4841–4843 (1983).
    [CrossRef]
  31. C. Durfee, T. Furtak, R. Collins, and R. Hollingsworth, “Metal-oxide-semiconductor-compatible ultra-long-range surface plasmon modes,” J. Appl. Phys. 109, 113106 (2008).
    [CrossRef]
  32. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
    [CrossRef] [PubMed]
  33. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  34. W.-J. Lee, J.-E. Kim, H.-Y. Park, S. tak Park, M. su Kim, J. T. Kim, and J.-J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103, 073713 (2008).
    [CrossRef]
  35. M. Salib, L. Liao, R. Jones, M. Morse, A. Liu, D. Samara-Rubio, D. Alduino, and M. Paniccia, “Silicon photonics,” Intel Tech. J. 8, 143–160 (2004).
  36. M. Spasenovic, D. van Oosten, E. Verhagen, and L. Kuipers, “Measurements of modal symmetry in subwavelength plasmonic slot waveguides,” Appl. Phys. Lett. 95, 203109(2009).
    [CrossRef]
  37. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2009).
    [CrossRef]
  38. J. Dionne, K. Diest, L. Sweatlock, and H. Atwater, “Plasmostor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
    [CrossRef] [PubMed]
  39. Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, and R. Hasumi, “Fundamental transverse electric field (te0) mode selection for thin-film asymmetric light guides,” Appl. Phys. Lett. 21, 291–293 (1972).
    [CrossRef]
  40. I. Kaminow, W. Mammel, and H. Weber, “Metal-clad optical waveguides: analytical and experimental study,” Appl. Opt. 13, 396–405 (1974).
    [CrossRef] [PubMed]
  41. D. Kumar, V. Sharma, and K. Tripathi, “Design and fabrication of multilayer metal-clad dielectric surface plasmon waveguide polarizers,” Opt. Eng. 45, 054601 (2006).
    [CrossRef]
  42. K. Ogusu and I. Tanaka, “Optical strip waveguide: an experiment,” Appl. Opt. 19, 3322–3325 (1980).
    [CrossRef] [PubMed]
  43. K. Suzuki, K. Ogusu, and M. Minakata, “Single-mode ag-as2se3 strip-loaded waveguides for applications to all-optical devices,” Opt. Express 13, 8634–8641 (2005).
    [CrossRef] [PubMed]
  44. R. Buckley and P. Berini, “Figures of merit for 2d surface plasmon waveguides and application to metal stripes,” Opt. Express 15, 12174–12182 (2007).
    [CrossRef] [PubMed]
  45. E. Verhagen, M. Spasenovic, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
    [CrossRef] [PubMed]

2010 (3)

2009 (7)

R. Adato and J. Guo, “Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers,” J. Appl. Phys. 105, 034306 (2009).
[CrossRef]

Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3d photonic integration,” Opt. Express 17, 21320–21325 (2009).
[CrossRef] [PubMed]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
[CrossRef] [PubMed]

M. Spasenovic, D. van Oosten, E. Verhagen, and L. Kuipers, “Measurements of modal symmetry in subwavelength plasmonic slot waveguides,” Appl. Phys. Lett. 95, 203109(2009).
[CrossRef]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2009).
[CrossRef]

J. Dionne, K. Diest, L. Sweatlock, and H. Atwater, “Plasmostor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

E. Verhagen, M. Spasenovic, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

2008 (4)

C. Durfee, T. Furtak, R. Collins, and R. Hollingsworth, “Metal-oxide-semiconductor-compatible ultra-long-range surface plasmon modes,” J. Appl. Phys. 109, 113106 (2008).
[CrossRef]

W.-J. Lee, J.-E. Kim, H.-Y. Park, S. tak Park, M. su Kim, J. T. Kim, and J.-J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103, 073713 (2008).
[CrossRef]

R. Oulton, V. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
[CrossRef]

2007 (5)

2006 (4)

D. Kumar, V. Sharma, and K. Tripathi, “Design and fabrication of multilayer metal-clad dielectric surface plasmon waveguide polarizers,” Opt. Eng. 45, 054601 (2006).
[CrossRef]

J. Dionne, L. Sweatlock, and H. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, “Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor,” Opt. Express 14, 7063–7072 (2006).
[CrossRef] [PubMed]

J. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14, 12409–12418 (2006).
[CrossRef] [PubMed]

2005 (5)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal groves,” Phys. Rev. Lett. 95, 046802(2005).
[CrossRef] [PubMed]

R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett. 20, 1473–1475 (2005).
[CrossRef]

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431 (2005).
[CrossRef]

F. Gao, Y. Wang, G. Cao, X. Jia, and F. Zhang, “Improvement of sidewall surface roughness in silicon-on-insulator rib waveguides,” Appl. Phys. B 81, 691–694 (2005).
[CrossRef]

K. Suzuki, K. Ogusu, and M. Minakata, “Single-mode ag-as2se3 strip-loaded waveguides for applications to all-optical devices,” Opt. Express 13, 8634–8641 (2005).
[CrossRef] [PubMed]

2004 (4)

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
[CrossRef]

L. Vivien, F. Grillot, E. Cassan, D. Pascal, S. Lardenois, A. Lupu, S. Laval, M. Heitzmann, and J. Fdli, “Comparison between strip and rib soi microwaveguides for intra-chip light distribution,” Opt. Mater. 27, 756–762 (2004).
[CrossRef]

D. Pile and D. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
[CrossRef] [PubMed]

M. Salib, L. Liao, R. Jones, M. Morse, A. Liu, D. Samara-Rubio, D. Alduino, and M. Paniccia, “Silicon photonics,” Intel Tech. J. 8, 143–160 (2004).

2002 (1)

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210, 43–49 (2002).
[CrossRef]

1996 (1)

U. Fischer, T. Zinke, and K. Petermann, “0.1 db/cm waveguide losses in single-mode soi rib waveguides,” IEEE Photon. Technol. Lett. 8, 647–648 (1996).
[CrossRef]

1994 (1)

A. Rickman, G. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol. 12, 1771–1776 (1994).
[CrossRef]

1991 (1)

J. Schmidtchen, A. Splett, B. Schuppert, and K. Petermann, “Low-loss single-mode optical waveguides with large cross section in silicon-on-insulator,” Electron. Lett. 27, 1486–1488 (1991).
[CrossRef]

1987 (1)

1985 (1)

K. Sasaki, H. Kawagishi, and Y. Ishijima, “Phase-matched second harmonic generation by a surface polariton along a silver layer on a slab-type optical waveguide,” Appl. Phys. Lett. 47, 783–785 (1985).
[CrossRef]

1983 (1)

G. Stegman and J. J. Burke, “Effects of gaps on long range surface plasmon polaritons,” J. Appl. Phys. 54, 4841–4843 (1983).
[CrossRef]

1980 (1)

1974 (1)

1972 (2)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, and R. Hasumi, “Fundamental transverse electric field (te0) mode selection for thin-film asymmetric light guides,” Appl. Phys. Lett. 21, 291–293 (1972).
[CrossRef]

Adato, R.

R. Adato and J. Guo, “Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers,” J. Appl. Phys. 105, 034306 (2009).
[CrossRef]

J. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14, 12409–12418 (2006).
[CrossRef] [PubMed]

Alduino, D.

M. Salib, L. Liao, R. Jones, M. Morse, A. Liu, D. Samara-Rubio, D. Alduino, and M. Paniccia, “Silicon photonics,” Intel Tech. J. 8, 143–160 (2004).

Almeida, V. R.

Amberg, P.

Arbel, D.

D. Arbel and M. Orenstein, “W-shaped plasmon waveguide for silicon based plasmonic modulator,” in “Proceedings of IEEE LEOS Annual Meeting Conf.”, (2006), pp. 262–263.

Atwater, H.

J. Dionne, K. Diest, L. Sweatlock, and H. Atwater, “Plasmostor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

J. Dionne, L. Sweatlock, and H. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Baets, R.

Barrios, C. A.

Berini, P.

R. Buckley and P. Berini, “Figures of merit for 2d surface plasmon waveguides and application to metal stripes,” Opt. Express 15, 12174–12182 (2007).
[CrossRef] [PubMed]

P. Berini, “Air gaps in metal stripe waveguides supporting long-range surface plasmon polaritons,” J. Appl. Phys. 102, 033112 (2007).
[CrossRef]

Bian, Y.

Bienstman, P.

Block, B.

I. Young, E. Mohammed, J. Liao, A. Kern, S. Palermo, B. Block, M. Reshotko, and P. Chang, “Optical i/o technology to prevent multi/many-core bottlenecks” Proc. of IEEE International Solid-State Circuits Conference 2009, 28.1 (2009).

Bouhelier, A.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal groves,” Phys. Rev. Lett. 95, 046802(2005).
[CrossRef] [PubMed]

Brongersma, M. L.

N.-N. Feng, M. L. Brongersma, and L. D. Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 um,” IEEE J. Sel. Top. Quantum Electron. 43, 479–485 (2007).
[CrossRef]

R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett. 20, 1473–1475 (2005).
[CrossRef]

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431 (2005).
[CrossRef]

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
[CrossRef]

Buckley, R.

Burke, J. J.

G. Stegman and J. J. Burke, “Effects of gaps on long range surface plasmon polaritons,” J. Appl. Phys. 54, 4841–4843 (1983).
[CrossRef]

Cao, G.

F. Gao, Y. Wang, G. Cao, X. Jia, and F. Zhang, “Improvement of sidewall surface roughness in silicon-on-insulator rib waveguides,” Appl. Phys. B 81, 691–694 (2005).
[CrossRef]

Cassan, E.

L. Vivien, F. Grillot, E. Cassan, D. Pascal, S. Lardenois, A. Lupu, S. Laval, M. Heitzmann, and J. Fdli, “Comparison between strip and rib soi microwaveguides for intra-chip light distribution,” Opt. Mater. 27, 756–762 (2004).
[CrossRef]

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210, 43–49 (2002).
[CrossRef]

Catrysse, P. B.

Chandran, A.

R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett. 20, 1473–1475 (2005).
[CrossRef]

Chang, P.

I. Young, E. Mohammed, J. Liao, A. Kern, S. Palermo, B. Block, M. Reshotko, and P. Chang, “Optical i/o technology to prevent multi/many-core bottlenecks” Proc. of IEEE International Solid-State Circuits Conference 2009, 28.1 (2009).

Chiba, K.

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, and R. Hasumi, “Fundamental transverse electric field (te0) mode selection for thin-film asymmetric light guides,” Appl. Phys. Lett. 21, 291–293 (1972).
[CrossRef]

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Collins, R.

C. Durfee, T. Furtak, R. Collins, and R. Hollingsworth, “Metal-oxide-semiconductor-compatible ultra-long-range surface plasmon modes,” J. Appl. Phys. 109, 113106 (2008).
[CrossRef]

Cunningham, J. E.

Dai, D.

Debackere, P.

Degiron, A.

Dellagiacoma, C.

Dereux, A.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

des Francs, G. C.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal groves,” Phys. Rev. Lett. 95, 046802(2005).
[CrossRef] [PubMed]

Diest, K.

J. Dionne, K. Diest, L. Sweatlock, and H. Atwater, “Plasmostor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Dionne, J.

J. Dionne, K. Diest, L. Sweatlock, and H. Atwater, “Plasmostor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

J. Dionne, L. Sweatlock, and H. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Dumont, B.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210, 43–49 (2002).
[CrossRef]

Durfee, C.

C. Durfee, T. Furtak, R. Collins, and R. Hollingsworth, “Metal-oxide-semiconductor-compatible ultra-long-range surface plasmon modes,” J. Appl. Phys. 109, 113106 (2008).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal groves,” Phys. Rev. Lett. 95, 046802(2005).
[CrossRef] [PubMed]

Fan, S.

Fdli, J.

L. Vivien, F. Grillot, E. Cassan, D. Pascal, S. Lardenois, A. Lupu, S. Laval, M. Heitzmann, and J. Fdli, “Comparison between strip and rib soi microwaveguides for intra-chip light distribution,” Opt. Mater. 27, 756–762 (2004).
[CrossRef]

Feng, N.-N.

N.-N. Feng, M. L. Brongersma, and L. D. Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 um,” IEEE J. Sel. Top. Quantum Electron. 43, 479–485 (2007).
[CrossRef]

Fischer, U.

U. Fischer, T. Zinke, and K. Petermann, “0.1 db/cm waveguide losses in single-mode soi rib waveguides,” IEEE Photon. Technol. Lett. 8, 647–648 (1996).
[CrossRef]

Furtak, T.

C. Durfee, T. Furtak, R. Collins, and R. Hollingsworth, “Metal-oxide-semiconductor-compatible ultra-long-range surface plasmon modes,” J. Appl. Phys. 109, 113106 (2008).
[CrossRef]

Furuya, K.

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, and R. Hasumi, “Fundamental transverse electric field (te0) mode selection for thin-film asymmetric light guides,” Appl. Phys. Lett. 21, 291–293 (1972).
[CrossRef]

Gao, F.

F. Gao, Y. Wang, G. Cao, X. Jia, and F. Zhang, “Improvement of sidewall surface roughness in silicon-on-insulator rib waveguides,” Appl. Phys. B 81, 691–694 (2005).
[CrossRef]

Garcia-Meca, C.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
[CrossRef]

Genov, D.

R. Oulton, V. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Gramotnev, D.

Grandidier, J.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

Grillot, F.

L. Vivien, F. Grillot, E. Cassan, D. Pascal, S. Lardenois, A. Lupu, S. Laval, M. Heitzmann, and J. Fdli, “Comparison between strip and rib soi microwaveguides for intra-chip light distribution,” Opt. Mater. 27, 756–762 (2004).
[CrossRef]

Guo, J.

R. Adato and J. Guo, “Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers,” J. Appl. Phys. 105, 034306 (2009).
[CrossRef]

J. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14, 12409–12418 (2006).
[CrossRef] [PubMed]

Hakuta, M.

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, and R. Hasumi, “Fundamental transverse electric field (te0) mode selection for thin-film asymmetric light guides,” Appl. Phys. Lett. 21, 291–293 (1972).
[CrossRef]

Hasumi, R.

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, and R. Hasumi, “Fundamental transverse electric field (te0) mode selection for thin-film asymmetric light guides,” Appl. Phys. Lett. 21, 291–293 (1972).
[CrossRef]

He, S.

Heitzmann, M.

L. Vivien, F. Grillot, E. Cassan, D. Pascal, S. Lardenois, A. Lupu, S. Laval, M. Heitzmann, and J. Fdli, “Comparison between strip and rib soi microwaveguides for intra-chip light distribution,” Opt. Mater. 27, 756–762 (2004).
[CrossRef]

Ho, R.

Hollingsworth, R.

C. Durfee, T. Furtak, R. Collins, and R. Hollingsworth, “Metal-oxide-semiconductor-compatible ultra-long-range surface plasmon modes,” J. Appl. Phys. 109, 113106 (2008).
[CrossRef]

Ishijima, Y.

K. Sasaki, H. Kawagishi, and Y. Ishijima, “Phase-matched second harmonic generation by a surface polariton along a silver layer on a slab-type optical waveguide,” Appl. Phys. Lett. 47, 783–785 (1985).
[CrossRef]

Jia, X.

F. Gao, Y. Wang, G. Cao, X. Jia, and F. Zhang, “Improvement of sidewall surface roughness in silicon-on-insulator rib waveguides,” Appl. Phys. B 81, 691–694 (2005).
[CrossRef]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jones, R.

M. Salib, L. Liao, R. Jones, M. Morse, A. Liu, D. Samara-Rubio, D. Alduino, and M. Paniccia, “Silicon photonics,” Intel Tech. J. 8, 143–160 (2004).

Ju, J. J.

Ju, J.-J.

W.-J. Lee, J.-E. Kim, H.-Y. Park, S. tak Park, M. su Kim, J. T. Kim, and J.-J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103, 073713 (2008).
[CrossRef]

Kaminow, I.

Kawagishi, H.

K. Sasaki, H. Kawagishi, and Y. Ishijima, “Phase-matched second harmonic generation by a surface polariton along a silver layer on a slab-type optical waveguide,” Appl. Phys. Lett. 47, 783–785 (1985).
[CrossRef]

Kern, A.

I. Young, E. Mohammed, J. Liao, A. Kern, S. Palermo, B. Block, M. Reshotko, and P. Chang, “Optical i/o technology to prevent multi/many-core bottlenecks” Proc. of IEEE International Solid-State Circuits Conference 2009, 28.1 (2009).

Kim, J. T.

J. T. Kim, J. J. Ju, S. Park, M. su Kim, S. K. Park, and S.-Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18, 2808–2813 (2010).
[CrossRef] [PubMed]

W.-J. Lee, J.-E. Kim, H.-Y. Park, S. tak Park, M. su Kim, J. T. Kim, and J.-J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103, 073713 (2008).
[CrossRef]

Kim, J.-E.

W.-J. Lee, J.-E. Kim, H.-Y. Park, S. tak Park, M. su Kim, J. T. Kim, and J.-J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103, 073713 (2008).
[CrossRef]

Koster, A.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210, 43–49 (2002).
[CrossRef]

Kou, F.

Krishnamoorthy, A. V.

Kuipers, L.

M. Spasenovic, D. van Oosten, E. Verhagen, and L. Kuipers, “Measurements of modal symmetry in subwavelength plasmonic slot waveguides,” Appl. Phys. Lett. 95, 203109(2009).
[CrossRef]

Kuipers, L. K.

E. Verhagen, M. Spasenovic, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Kumar, D.

D. Kumar, V. Sharma, and K. Tripathi, “Design and fabrication of multilayer metal-clad dielectric surface plasmon waveguide polarizers,” Opt. Eng. 45, 054601 (2006).
[CrossRef]

Lardenois, S.

L. Vivien, F. Grillot, E. Cassan, D. Pascal, S. Lardenois, A. Lupu, S. Laval, M. Heitzmann, and J. Fdli, “Comparison between strip and rib soi microwaveguides for intra-chip light distribution,” Opt. Mater. 27, 756–762 (2004).
[CrossRef]

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210, 43–49 (2002).
[CrossRef]

Laval, S.

L. Vivien, F. Grillot, E. Cassan, D. Pascal, S. Lardenois, A. Lupu, S. Laval, M. Heitzmann, and J. Fdli, “Comparison between strip and rib soi microwaveguides for intra-chip light distribution,” Opt. Mater. 27, 756–762 (2004).
[CrossRef]

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210, 43–49 (2002).
[CrossRef]

Lee, W.-J.

W.-J. Lee, J.-E. Kim, H.-Y. Park, S. tak Park, M. su Kim, J. T. Kim, and J.-J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103, 073713 (2008).
[CrossRef]

Lexau, J.

Li, G.

Liao, J.

I. Young, E. Mohammed, J. Liao, A. Kern, S. Palermo, B. Block, M. Reshotko, and P. Chang, “Optical i/o technology to prevent multi/many-core bottlenecks” Proc. of IEEE International Solid-State Circuits Conference 2009, 28.1 (2009).

Liao, L.

M. Salib, L. Liao, R. Jones, M. Morse, A. Liu, D. Samara-Rubio, D. Alduino, and M. Paniccia, “Silicon photonics,” Intel Tech. J. 8, 143–160 (2004).

Lipson, M.

Liu, A.

M. Salib, L. Liao, R. Jones, M. Morse, A. Liu, D. Samara-Rubio, D. Alduino, and M. Paniccia, “Silicon photonics,” Intel Tech. J. 8, 143–160 (2004).

Luo, Y.

Lupu, A.

L. Vivien, F. Grillot, E. Cassan, D. Pascal, S. Lardenois, A. Lupu, S. Laval, M. Heitzmann, and J. Fdli, “Comparison between strip and rib soi microwaveguides for intra-chip light distribution,” Opt. Mater. 27, 756–762 (2004).
[CrossRef]

Mammel, W.

Markey, L.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

Marti, J.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
[CrossRef]

Martin, O. J. F.

Martinez, A.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
[CrossRef]

Massenot, S.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

McIlhargey, J. G.

Mekis, A.

Minakata, M.

Mohammed, E.

I. Young, E. Mohammed, J. Liao, A. Kern, S. Palermo, B. Block, M. Reshotko, and P. Chang, “Optical i/o technology to prevent multi/many-core bottlenecks” Proc. of IEEE International Solid-State Circuits Conference 2009, 28.1 (2009).

Morse, M.

M. Salib, L. Liao, R. Jones, M. Morse, A. Liu, D. Samara-Rubio, D. Alduino, and M. Paniccia, “Silicon photonics,” Intel Tech. J. 8, 143–160 (2004).

Namavar, F.

A. Rickman, G. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol. 12, 1771–1776 (1994).
[CrossRef]

Negro, L. D.

N.-N. Feng, M. L. Brongersma, and L. D. Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 um,” IEEE J. Sel. Top. Quantum Electron. 43, 479–485 (2007).
[CrossRef]

Ogusu, K.

Orenstein, M.

D. Arbel and M. Orenstein, “W-shaped plasmon waveguide for silicon based plasmonic modulator,” in “Proceedings of IEEE LEOS Annual Meeting Conf.”, (2006), pp. 262–263.

Ortuno, R.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
[CrossRef]

Oulton, R.

R. Oulton, V. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Palermo, S.

I. Young, E. Mohammed, J. Liao, A. Kern, S. Palermo, B. Block, M. Reshotko, and P. Chang, “Optical i/o technology to prevent multi/many-core bottlenecks” Proc. of IEEE International Solid-State Circuits Conference 2009, 28.1 (2009).

Paniccia, M.

M. Salib, L. Liao, R. Jones, M. Morse, A. Liu, D. Samara-Rubio, D. Alduino, and M. Paniccia, “Silicon photonics,” Intel Tech. J. 8, 143–160 (2004).

Park, H.-Y.

W.-J. Lee, J.-E. Kim, H.-Y. Park, S. tak Park, M. su Kim, J. T. Kim, and J.-J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103, 073713 (2008).
[CrossRef]

Park, S.

Park, S. K.

Pascal, D.

L. Vivien, F. Grillot, E. Cassan, D. Pascal, S. Lardenois, A. Lupu, S. Laval, M. Heitzmann, and J. Fdli, “Comparison between strip and rib soi microwaveguides for intra-chip light distribution,” Opt. Mater. 27, 756–762 (2004).
[CrossRef]

Petermann, K.

U. Fischer, T. Zinke, and K. Petermann, “0.1 db/cm waveguide losses in single-mode soi rib waveguides,” IEEE Photon. Technol. Lett. 8, 647–648 (1996).
[CrossRef]

J. Schmidtchen, A. Splett, B. Schuppert, and K. Petermann, “Low-loss single-mode optical waveguides with large cross section in silicon-on-insulator,” Electron. Lett. 27, 1486–1488 (1991).
[CrossRef]

Pile, D.

R. Oulton, V. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

D. Pile and D. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
[CrossRef] [PubMed]

Pinckney, N.

Pinguet, T.

Polman, A.

E. Verhagen, M. Spasenovic, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Raj, K.

Reed, G.

A. Rickman, G. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol. 12, 1771–1776 (1994).
[CrossRef]

Reshotko, M.

I. Young, E. Mohammed, J. Liao, A. Kern, S. Palermo, B. Block, M. Reshotko, and P. Chang, “Optical i/o technology to prevent multi/many-core bottlenecks” Proc. of IEEE International Solid-State Circuits Conference 2009, 28.1 (2009).

Rickman, A.

A. Rickman, G. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol. 12, 1771–1776 (1994).
[CrossRef]

Salib, M.

M. Salib, L. Liao, R. Jones, M. Morse, A. Liu, D. Samara-Rubio, D. Alduino, and M. Paniccia, “Silicon photonics,” Intel Tech. J. 8, 143–160 (2004).

Salvador, R.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
[CrossRef]

Samara-Rubio, D.

M. Salib, L. Liao, R. Jones, M. Morse, A. Liu, D. Samara-Rubio, D. Alduino, and M. Paniccia, “Silicon photonics,” Intel Tech. J. 8, 143–160 (2004).

Sasaki, K.

K. Sasaki, H. Kawagishi, and Y. Ishijima, “Phase-matched second harmonic generation by a surface polariton along a silver layer on a slab-type optical waveguide,” Appl. Phys. Lett. 47, 783–785 (1985).
[CrossRef]

Scheerlinck, S.

Schmidtchen, J.

J. Schmidtchen, A. Splett, B. Schuppert, and K. Petermann, “Low-loss single-mode optical waveguides with large cross section in silicon-on-insulator,” Electron. Lett. 27, 1486–1488 (1991).
[CrossRef]

Schuppert, B.

J. Schmidtchen, A. Splett, B. Schuppert, and K. Petermann, “Low-loss single-mode optical waveguides with large cross section in silicon-on-insulator,” Electron. Lett. 27, 1486–1488 (1991).
[CrossRef]

Selker, M. D.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431 (2005).
[CrossRef]

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
[CrossRef]

Sharma, V.

D. Kumar, V. Sharma, and K. Tripathi, “Design and fabrication of multilayer metal-clad dielectric surface plasmon waveguide polarizers,” Opt. Eng. 45, 054601 (2006).
[CrossRef]

Shi, J.

Shin, S.-Y.

Shvets, G.

Smith, D. R.

Sorger, V.

R. Oulton, V. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Spasenovic, M.

M. Spasenovic, D. van Oosten, E. Verhagen, and L. Kuipers, “Measurements of modal symmetry in subwavelength plasmonic slot waveguides,” Appl. Phys. Lett. 95, 203109(2009).
[CrossRef]

E. Verhagen, M. Spasenovic, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Splett, A.

J. Schmidtchen, A. Splett, B. Schuppert, and K. Petermann, “Low-loss single-mode optical waveguides with large cross section in silicon-on-insulator,” Electron. Lett. 27, 1486–1488 (1991).
[CrossRef]

Stegman, G.

G. Stegman and J. J. Burke, “Effects of gaps on long range surface plasmon polaritons,” J. Appl. Phys. 54, 4841–4843 (1983).
[CrossRef]

su Kim, M.

J. T. Kim, J. J. Ju, S. Park, M. su Kim, S. K. Park, and S.-Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18, 2808–2813 (2010).
[CrossRef] [PubMed]

W.-J. Lee, J.-E. Kim, H.-Y. Park, S. tak Park, M. su Kim, J. T. Kim, and J.-J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103, 073713 (2008).
[CrossRef]

Suematsu, Y.

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, and R. Hasumi, “Fundamental transverse electric field (te0) mode selection for thin-film asymmetric light guides,” Appl. Phys. Lett. 21, 291–293 (1972).
[CrossRef]

Suzuki, K.

Sweatlock, L.

J. Dionne, K. Diest, L. Sweatlock, and H. Atwater, “Plasmostor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

J. Dionne, L. Sweatlock, and H. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

tak Park, S.

W.-J. Lee, J.-E. Kim, H.-Y. Park, S. tak Park, M. su Kim, J. T. Kim, and J.-J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103, 073713 (2008).
[CrossRef]

Tamir, T.

Tanaka, I.

Thacker, H.

Tripathi, K.

D. Kumar, V. Sharma, and K. Tripathi, “Design and fabrication of multilayer metal-clad dielectric surface plasmon waveguide polarizers,” Opt. Eng. 45, 054601 (2006).
[CrossRef]

van Oosten, D.

M. Spasenovic, D. van Oosten, E. Verhagen, and L. Kuipers, “Measurements of modal symmetry in subwavelength plasmonic slot waveguides,” Appl. Phys. Lett. 95, 203109(2009).
[CrossRef]

Verhagen, E.

M. Spasenovic, D. van Oosten, E. Verhagen, and L. Kuipers, “Measurements of modal symmetry in subwavelength plasmonic slot waveguides,” Appl. Phys. Lett. 95, 203109(2009).
[CrossRef]

E. Verhagen, M. Spasenovic, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Veronis, G.

Vivien, L.

L. Vivien, F. Grillot, E. Cassan, D. Pascal, S. Lardenois, A. Lupu, S. Laval, M. Heitzmann, and J. Fdli, “Comparison between strip and rib soi microwaveguides for intra-chip light distribution,” Opt. Mater. 27, 756–762 (2004).
[CrossRef]

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210, 43–49 (2002).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal groves,” Phys. Rev. Lett. 95, 046802(2005).
[CrossRef] [PubMed]

Wang, Y.

F. Gao, Y. Wang, G. Cao, X. Jia, and F. Zhang, “Improvement of sidewall surface roughness in silicon-on-insulator rib waveguides,” Appl. Phys. B 81, 691–694 (2005).
[CrossRef]

Weber, H.

Weeber, J.-C.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

Xu, Q.

Young, I.

I. Young, E. Mohammed, J. Liao, A. Kern, S. Palermo, B. Block, M. Reshotko, and P. Chang, “Optical i/o technology to prevent multi/many-core bottlenecks” Proc. of IEEE International Solid-State Circuits Conference 2009, 28.1 (2009).

Zhang, F.

F. Gao, Y. Wang, G. Cao, X. Jia, and F. Zhang, “Improvement of sidewall surface roughness in silicon-on-insulator rib waveguides,” Appl. Phys. B 81, 691–694 (2005).
[CrossRef]

Zhang, X.

R. Oulton, V. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Zhao, X.

Zheng, X.

Zheng, Z.

Zhou, T.

Zhu, J.

Zia, R.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431 (2005).
[CrossRef]

R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett. 20, 1473–1475 (2005).
[CrossRef]

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
[CrossRef]

Zinke, T.

U. Fischer, T. Zinke, and K. Petermann, “0.1 db/cm waveguide losses in single-mode soi rib waveguides,” IEEE Photon. Technol. Lett. 8, 647–648 (1996).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

F. Gao, Y. Wang, G. Cao, X. Jia, and F. Zhang, “Improvement of sidewall surface roughness in silicon-on-insulator rib waveguides,” Appl. Phys. B 81, 691–694 (2005).
[CrossRef]

Appl. Phys. Lett. (4)

K. Sasaki, H. Kawagishi, and Y. Ishijima, “Phase-matched second harmonic generation by a surface polariton along a silver layer on a slab-type optical waveguide,” Appl. Phys. Lett. 47, 783–785 (1985).
[CrossRef]

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

M. Spasenovic, D. van Oosten, E. Verhagen, and L. Kuipers, “Measurements of modal symmetry in subwavelength plasmonic slot waveguides,” Appl. Phys. Lett. 95, 203109(2009).
[CrossRef]

Y. Suematsu, M. Hakuta, K. Furuya, K. Chiba, and R. Hasumi, “Fundamental transverse electric field (te0) mode selection for thin-film asymmetric light guides,” Appl. Phys. Lett. 21, 291–293 (1972).
[CrossRef]

Electron. Lett. (1)

J. Schmidtchen, A. Splett, B. Schuppert, and K. Petermann, “Low-loss single-mode optical waveguides with large cross section in silicon-on-insulator,” Electron. Lett. 27, 1486–1488 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
[CrossRef]

N.-N. Feng, M. L. Brongersma, and L. D. Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 um,” IEEE J. Sel. Top. Quantum Electron. 43, 479–485 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

U. Fischer, T. Zinke, and K. Petermann, “0.1 db/cm waveguide losses in single-mode soi rib waveguides,” IEEE Photon. Technol. Lett. 8, 647–648 (1996).
[CrossRef]

Intel Tech. J. (1)

M. Salib, L. Liao, R. Jones, M. Morse, A. Liu, D. Samara-Rubio, D. Alduino, and M. Paniccia, “Silicon photonics,” Intel Tech. J. 8, 143–160 (2004).

J. Appl. Phys. (5)

R. Adato and J. Guo, “Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers,” J. Appl. Phys. 105, 034306 (2009).
[CrossRef]

P. Berini, “Air gaps in metal stripe waveguides supporting long-range surface plasmon polaritons,” J. Appl. Phys. 102, 033112 (2007).
[CrossRef]

W.-J. Lee, J.-E. Kim, H.-Y. Park, S. tak Park, M. su Kim, J. T. Kim, and J.-J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103, 073713 (2008).
[CrossRef]

G. Stegman and J. J. Burke, “Effects of gaps on long range surface plasmon polaritons,” J. Appl. Phys. 54, 4841–4843 (1983).
[CrossRef]

C. Durfee, T. Furtak, R. Collins, and R. Hollingsworth, “Metal-oxide-semiconductor-compatible ultra-long-range surface plasmon modes,” J. Appl. Phys. 109, 113106 (2008).
[CrossRef]

J. Lightwave Technol. (2)

A. Rickman, G. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol. 12, 1771–1776 (1994).
[CrossRef]

G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511– 2521 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

J. Dionne, K. Diest, L. Sweatlock, and H. Atwater, “Plasmostor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

R. Oulton, V. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Opt. Commun. (1)

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210, 43–49 (2002).
[CrossRef]

Opt. Eng. (1)

D. Kumar, V. Sharma, and K. Tripathi, “Design and fabrication of multilayer metal-clad dielectric surface plasmon waveguide polarizers,” Opt. Eng. 45, 054601 (2006).
[CrossRef]

Opt. Express (8)

K. Suzuki, K. Ogusu, and M. Minakata, “Single-mode ag-as2se3 strip-loaded waveguides for applications to all-optical devices,” Opt. Express 13, 8634–8641 (2005).
[CrossRef] [PubMed]

R. Buckley and P. Berini, “Figures of merit for 2d surface plasmon waveguides and application to metal stripes,” Opt. Express 15, 12174–12182 (2007).
[CrossRef] [PubMed]

X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-cmos modulator integrated with driver,” Opt. Express 18, 3059–3070 (2010).
[CrossRef] [PubMed]

P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, “Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor,” Opt. Express 14, 7063–7072 (2006).
[CrossRef] [PubMed]

J. T. Kim, J. J. Ju, S. Park, M. su Kim, S. K. Park, and S.-Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18, 2808–2813 (2010).
[CrossRef] [PubMed]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
[CrossRef] [PubMed]

J. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14, 12409–12418 (2006).
[CrossRef] [PubMed]

Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3d photonic integration,” Opt. Express 17, 21320–21325 (2009).
[CrossRef] [PubMed]

Opt. Lett. (5)

Opt. Mater. (1)

L. Vivien, F. Grillot, E. Cassan, D. Pascal, S. Lardenois, A. Lupu, S. Laval, M. Heitzmann, and J. Fdli, “Comparison between strip and rib soi microwaveguides for intra-chip light distribution,” Opt. Mater. 27, 756–762 (2004).
[CrossRef]

Phys. Rev. B (3)

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431 (2005).
[CrossRef]

J. Dionne, L. Sweatlock, and H. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal groves,” Phys. Rev. Lett. 95, 046802(2005).
[CrossRef] [PubMed]

E. Verhagen, M. Spasenovic, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Other (2)

D. Arbel and M. Orenstein, “W-shaped plasmon waveguide for silicon based plasmonic modulator,” in “Proceedings of IEEE LEOS Annual Meeting Conf.”, (2006), pp. 262–263.

I. Young, E. Mohammed, J. Liao, A. Kern, S. Palermo, B. Block, M. Reshotko, and P. Chang, “Optical i/o technology to prevent multi/many-core bottlenecks” Proc. of IEEE International Solid-State Circuits Conference 2009, 28.1 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Waveguide Geometry and Simulated Mode: (a) schematic of the basic waveguide structure (layer thicknesses not to scale); and (b) finite element simulation of the magnetic field (H-field) showing the modal profile for 1550 nm excitation. The pseudo color scale in (b) represents the magnitude of the magnetic field, while the arrows are a snap-shot of the vector magnetic field. For the simulation in (b), the thickness of the oxide, to = 10 nm, the width of the metal strip, wm = 2 μm, the thickness of the metal strip, tm = 80 nm, the thickness of the device silicon layer, td = 2 μm, and the thickness of the buried oxide layer, tb = 4 μm. (c) and (d) show images of fabricated structures: (c) shows an overhead view of metal lines fabricated via lift-off, and (d) shows polished end-facets of an 1 cm2 SOI chip.

Fig. 2
Fig. 2

Different Field Visualizations: Different field profiles with insets showing line cuts for the structure in figure 1(a) showing how different fields are discontinuous or continuous at the silicon-oxide boundary: (a) magnetic field, both magnitude and vector field; (b) electric field, both magnitude and vector field; (c) time averaged Poynting vector (power flow directed into the page); (d) time averaged energy density.

Fig. 3
Fig. 3

Slab Waveguide Modes: Mode profiles (magnitude of E-field or H-field) for different slab (1-D) structures: (left) TE E-field and TM H-field modes for structure without the top metal layer; (right) TE E-field and TM H-field modes for structure covered completely by top metal layer. The thicknesses of the rest of the layers are the same as in Fig. 1(a). The horizontal lines in the mode profiles indicate the locations of boundaries between the device silicon and device oxide (upper line) or buried oxide (lower line) layers. Note the field in the red circles for the TE modes, which show how the field is pushed away from the metal surface, slightly decreasing the effective index. For TM polarization, the field is more dramatically attracted toward the metal.

Fig. 4
Fig. 4

Moving Through the Light Line: Mode profiles for the slab waveguide structure as the thickness of a high-k oxide (n=2) is changed. The other thicknesses are the same as in Fig. 3. The inlaid graph shows the real part of the effective index of the modes and the decay constant (alpha) as a function of oxide thickness.

Fig. 5
Fig. 5

Experimental Verification: (a) Schematic of experimental setup used to image waveguide profiles. Two waveguides were measured and simulated in (b)-(e): (left) td = 2μm, to = 13 nm, no = 1.5, tm = 80 nm, wm = 5μm; and (right) td = 3μm, to = 24 nm, no = 1.5, tm = 80 nm, wm = 5μm. (b) Simulations and (c) measured TM profiles for the two waveguide structures; (d) Measured TE profiles (no guiding observed) for the two waveguide structures.

Fig. 6
Fig. 6

Controling Mode Characteristics: Mode profiles (magnitude of H-field) for different metal line widths and oxide thicknesses: (a) to = 3 nm and wm = 500 nm; (b) to = 3 nm and wm = 400 nm; (c) to = 3 nm and wm = 300 nm; (d) to = 3 nm and wm = 250 nm; (e) to = 3 nm and wm = 500 nm; (b) to = 4 nm and wm = 500 nm; (c) to = 5 nm and wm = 500 nm; and (d) to = 6 nm and and wm = 500 nm. The thickness of the device silicon is td = 2μm, the thickness of the device oxide is to = 3 nm and the thickness of the metal is 80 nm for all simulations. The single contour that is shown bounds the region where the H-field is greater than 1/e of its peak value. The H-field vector is predominantly horizontal (TM) in all images. The figures of merit, M 1 2 D , and the propagation lengths are also shown.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( dB z ) = 10 log ( P P 0 ) = 40 π n i λ 0 log e ,
L λ 0 4 π n i = 1 2 α = 10 log e ( dB / z ) ,
M 1 2 D π A e 1 α ,

Metrics