Abstract

We demonstrate a micro-structured aperture made of a unique hollow triangular-core fiber (HTCF) that consists of a central air hole, a high-index hollow triangular core, and silica cladding for all-fiber novel beam shaping. Detailed fabrication processes to embed a hollow triangular structure into a cylindrical optical fiber are described and unique diffraction patterns out of the HTCF for monochromatic light are analyzed both experimentally and theoretically. Fourier-optic analysis combined with guided mode calculation was pursued to interpret experimental patterns in terms of the beam propagation distance.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. M. Dickey, “Laser beam shaping,” Opt. Photon. News 14(4), 30–35 (2003).
    [CrossRef]
  2. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company Publishers, Greenwood Village, CO, 2005).
  3. M. Gu and X. S. Gan, “Fresnel diffraction by circular and serrated apertures illuminated with an ultrashort pulsed-laser beam,” J. Opt. Soc. Am. A 13(4), 771–778 (1996).
    [CrossRef]
  4. L. J. Hornbeck, “Digital Light Processing for high-brightness, high-resolution applications,” Proc. SPIE 3013, 27–40 (1997).
    [CrossRef]
  5. H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, and H. Kück, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” IEEE J. Sel. Top. Quantum Electron. 6(5), 715–722 (2000).
    [CrossRef]
  6. M. L. Huebschman, B. Munjuluri, and H. R. Garner, “Dynamic holographic 3-D image projection,” Opt. Express 11(5), 437–445 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-11-5-437 .
    [CrossRef] [PubMed]
  7. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [CrossRef]
  8. K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23(2), 524–532 (2005).
    [CrossRef]
  9. J. K. Kim, J. Kim, Y. Jung, W. Ha, Y. S. Jeong, S. Lee, A. Tünnermann, and K. Oh, “Compact all-fiber Bessel beam generator based on hollow optical fiber combined with a hybrid polymer fiber lens,” Opt. Lett. 34(19), 2973–2975 (2009).
    [CrossRef] [PubMed]
  10. A. R. Tynes, A. D. Pearson, and D. L. Bisbee, “Loss mechanisms and measurements in clad glass fibers and bulk glass,” J. Opt. Soc. Am. 61(2), 143–153 (1971).
    [CrossRef]
  11. R. B. Dyott, C. R. Day, and M. C. Brain, “Glass-fibre waveguide with a triangular core,” Electron. Lett. 9(13), 288–290 (1973).
    [CrossRef]
  12. A. R. Tynes, “Partially cladded triangular-cored glass optical fibers and lasers,” J. Opt. Soc. Am. 64(11), 1415–1423 (1974).
    [CrossRef]
  13. K. Oh, W. Ha, S. Lee, J. Kim, Y. Jeong, and M. Park, “Preforms for preparing polygonal-core optical fiber and preparation method thereof,” Korean patent application 10–2010–0066761 (12 July 2010).
  14. Heraeus website, http://optics.heraeus-quarzglas.com .
  15. S. Choi, K. Oh, W. Shin, and U. C. Ryu, “Low loss mode converter based on adiabatically tapered hollow optical fibre,” Electron. Lett. 37(13), 823–825 (2001).
    [CrossRef]
  16. W. Ha, S. Lee, Y. Jung, J. K. Kim, and K. Oh, “Acousto-optic control of speckle contrast in multimode fibers with a cylindrical piezoelectric transducer oscillating in the radial direction,” Opt. Express 17(20), 17536–17546 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-20-17536 .
    [CrossRef] [PubMed]
  17. L. Yuan, J. Yang, C. Guan, Q. Dai, and F. Tian, “Three-core fiber-based shape-sensing application,” Opt. Lett. 33(6), 578–580 (2008).
    [CrossRef] [PubMed]
  18. Z. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-10-17-853 .
    [PubMed]

2009 (2)

2008 (1)

2006 (1)

2005 (1)

2003 (2)

2002 (1)

2001 (1)

S. Choi, K. Oh, W. Shin, and U. C. Ryu, “Low loss mode converter based on adiabatically tapered hollow optical fibre,” Electron. Lett. 37(13), 823–825 (2001).
[CrossRef]

2000 (1)

H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, and H. Kück, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” IEEE J. Sel. Top. Quantum Electron. 6(5), 715–722 (2000).
[CrossRef]

1997 (1)

L. J. Hornbeck, “Digital Light Processing for high-brightness, high-resolution applications,” Proc. SPIE 3013, 27–40 (1997).
[CrossRef]

1996 (1)

1974 (1)

1973 (1)

R. B. Dyott, C. R. Day, and M. C. Brain, “Glass-fibre waveguide with a triangular core,” Electron. Lett. 9(13), 288–290 (1973).
[CrossRef]

1971 (1)

Bisbee, D. L.

Brain, M. C.

R. B. Dyott, C. R. Day, and M. C. Brain, “Glass-fibre waveguide with a triangular core,” Electron. Lett. 9(13), 288–290 (1973).
[CrossRef]

Brown, T. G.

Choi, S.

K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23(2), 524–532 (2005).
[CrossRef]

S. Choi, K. Oh, W. Shin, and U. C. Ryu, “Low loss mode converter based on adiabatically tapered hollow optical fibre,” Electron. Lett. 37(13), 823–825 (2001).
[CrossRef]

Dai, Q.

Day, C. R.

R. B. Dyott, C. R. Day, and M. C. Brain, “Glass-fibre waveguide with a triangular core,” Electron. Lett. 9(13), 288–290 (1973).
[CrossRef]

Dickey, F. M.

F. M. Dickey, “Laser beam shaping,” Opt. Photon. News 14(4), 30–35 (2003).
[CrossRef]

Dürr, P.

H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, and H. Kück, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” IEEE J. Sel. Top. Quantum Electron. 6(5), 715–722 (2000).
[CrossRef]

Dyott, R. B.

R. B. Dyott, C. R. Day, and M. C. Brain, “Glass-fibre waveguide with a triangular core,” Electron. Lett. 9(13), 288–290 (1973).
[CrossRef]

Gan, X. S.

Garner, H. R.

Gu, M.

Guan, C.

Ha, W.

Haase, T.

H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, and H. Kück, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” IEEE J. Sel. Top. Quantum Electron. 6(5), 715–722 (2000).
[CrossRef]

Hornbeck, L. J.

L. J. Hornbeck, “Digital Light Processing for high-brightness, high-resolution applications,” Proc. SPIE 3013, 27–40 (1997).
[CrossRef]

Huebschman, M. L.

Jeong, Y. S.

Jung, Y.

Kim, J.

Kim, J. K.

Kück, H.

H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, and H. Kück, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” IEEE J. Sel. Top. Quantum Electron. 6(5), 715–722 (2000).
[CrossRef]

Kunze, D.

H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, and H. Kück, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” IEEE J. Sel. Top. Quantum Electron. 6(5), 715–722 (2000).
[CrossRef]

Lakner, H.

H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, and H. Kück, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” IEEE J. Sel. Top. Quantum Electron. 6(5), 715–722 (2000).
[CrossRef]

Lee, J. W.

Lee, S.

Munjuluri, B.

Oh, K.

Pearson, A. D.

Russell, P. St. J.

Ryu, U. C.

S. Choi, K. Oh, W. Shin, and U. C. Ryu, “Low loss mode converter based on adiabatically tapered hollow optical fibre,” Electron. Lett. 37(13), 823–825 (2001).
[CrossRef]

Schenk, H.

H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, and H. Kück, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” IEEE J. Sel. Top. Quantum Electron. 6(5), 715–722 (2000).
[CrossRef]

Shin, W.

S. Choi, K. Oh, W. Shin, and U. C. Ryu, “Low loss mode converter based on adiabatically tapered hollow optical fibre,” Electron. Lett. 37(13), 823–825 (2001).
[CrossRef]

Sobe, U.

H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, and H. Kück, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” IEEE J. Sel. Top. Quantum Electron. 6(5), 715–722 (2000).
[CrossRef]

Tian, F.

Tünnermann, A.

Tynes, A. R.

Yang, J.

Yuan, L.

Zhu, Z.

Electron. Lett. (2)

S. Choi, K. Oh, W. Shin, and U. C. Ryu, “Low loss mode converter based on adiabatically tapered hollow optical fibre,” Electron. Lett. 37(13), 823–825 (2001).
[CrossRef]

R. B. Dyott, C. R. Day, and M. C. Brain, “Glass-fibre waveguide with a triangular core,” Electron. Lett. 9(13), 288–290 (1973).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, and H. Kück, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” IEEE J. Sel. Top. Quantum Electron. 6(5), 715–722 (2000).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Opt. Express (3)

Opt. Lett. (2)

Opt. Photon. News (1)

F. M. Dickey, “Laser beam shaping,” Opt. Photon. News 14(4), 30–35 (2003).
[CrossRef]

Proc. SPIE (1)

L. J. Hornbeck, “Digital Light Processing for high-brightness, high-resolution applications,” Proc. SPIE 3013, 27–40 (1997).
[CrossRef]

Other (3)

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company Publishers, Greenwood Village, CO, 2005).

K. Oh, W. Ha, S. Lee, J. Kim, Y. Jeong, and M. Park, “Preforms for preparing polygonal-core optical fiber and preparation method thereof,” Korean patent application 10–2010–0066761 (12 July 2010).

Heraeus website, http://optics.heraeus-quarzglas.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic fabrication processes to make a preform for the HTCF: the MCVD, side-cutting and polishing, and collapsing. (b) A triangular tube after side polishing. (c) A cross section of the drawn HTCF.

Fig. 2
Fig. 2

Near-field patterns of the HTCF for various λ of (a) 500 nm, (b) 600 nm, (c) 700 nm, and (d) 800 nm.

Fig. 3
Fig. 3

Evolution of patterns from the near field to the far field for λ = 635 nm out of the HTCF

Fig. 4
Fig. 4

Schematic description of diffraction evolution out of the HTCF from the near field to the far field.

Fig. 5
Fig. 5

Measured intensity patterns out of the HTCF at different axial positions for λ = 635 nm. (a) Near field, (b) 90 μm, (c) 180 μm, and (d) 660 μm and beyond.

Fig. 6
Fig. 6

Representative modes (whose intensities are mainly confined within the top vertex of the hollow triangular core) for each group for λ = 635 nm.

Fig. 7
Fig. 7

The next ten higher-order modes which cannot be grouped.

Fig. 8
Fig. 8

Simulation of diffraction evolution based on Eq. (6) for the propagation distances of (a) 0, the near field pattern, (b) 90 μm, (c) 180 μm, and (d) 660 μm, the Fraunhofer diffraction pattern.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I z = 0 m = 1 46 | E m ( x , y ) | 2 .
I z = 0 m = 37 46 | E m ( x , y ) | 2 .
z ASPW E ( x , y ) = 1 ( exp { 2 π i z [ ( n / λ ) 2 k x 2 k y 2 ] 1 / 2 } E ( x , y ) ) ,
E ( x , y ) = d x d y exp [ 2 π i ( x k x + y k y ) ] E ( x , y ) ,
1 E ( k x , k y ) = d k x d k y exp [ 2 π i ( x k x + y k y ) ] E ( k x , k y ) .
I z > 0 m = 37 46 | z ASPW E m ( x , y ) | 2 ,

Metrics