Abstract

Photorefractive optical damage of single beams in LiNbO3 crystals is analyzed within a framework of two photoactive centres (Fe2+/Fe3+ and NbLi 4+/NbLi 5+). It compares model simulations and significant experimental measurements in LiNbO3 waveguides. A good agreement is found in the performed comparisons: photovoltaic currents, refractive index changes and, especially relevant, in degraded beam-profiles. The progress of the degraded wavefront has been simulated by implementing a finite-difference beam-propagating method which includes the model equations. These results, together with previous ones on grating recording, provide a comprehensive, satisfactory explanation of most important questions on photorefractive optical damage.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Volk, M. Wöhlecke, and N. Rubinina, “Optical damage resistance in lithium niobate”, in Photorefractive materials and their applications 2, Materials, P. Günter and J. P. Huignard, eds, (Springer, 2007), pp165–203.
  2. D. Kip, and M. Wesner, “Photorefractive waveguides”, in Photorefractive materials and their applications 1, Basic effects, P. Günter and J.P. Huignard, eds, (Springer, 2006), pp 281–315.
  3. D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007).
    [CrossRef]
  4. M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3(9), 510–513 (2009).
    [CrossRef]
  5. A. Ashkin, G. D. Boyd, J. M. Dziedzik, R. G. Smith, A. A. Ballman, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
    [CrossRef]
  6. P. Gunter, and J. P. Huignard, eds., Photorefractive Materials and Their Applications (3 Vols.) (Springer Series in Optical Sciences, New York, 2006).
  7. T. Volk, N. Rubinina, and M. Wohlecke, “Optical-damage-resistant impurities in lithium-niobate,” J. Opt. Soc. Am. B 11(9), 1681–1687 (1994).
    [CrossRef]
  8. O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3 and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997).
    [CrossRef]
  9. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
    [CrossRef]
  10. W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, and H. J. Shaw, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO:LiNbO3,” Opt. Lett. 16(13), 995–997 (1991).
    [CrossRef] [PubMed]
  11. M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78(21), 3163–3165 (2001).
    [CrossRef]
  12. J. Rams, A. Alcázar de Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178(1-3), 211–216 (2000).
    [CrossRef]
  13. M. Falk, T. Woike, and K. Buse, “Reduction of optical damage in lithium niobate crystals by thermo-electric oxidation,” Appl. Phys. Lett. 90(25), 847–849 (2007).
    [CrossRef]
  14. J. Carnicero, M. Carrascosa, A. Méndez, A. García-Cabañes, and J. M. Cabrera, “Optical damage control via the Fe2+/Fe3+ ratio in proton-exchanged LiNbO3 waveguides,” Opt. Lett. 32(16), 2294–2296 (2007).
    [CrossRef] [PubMed]
  15. J. C. Chon, W. Feng, and A. R. Mickelson, “Photorefractive damage threshold in Ti-LiNbO3 channel wave-guides,” Appl. Opt. 32(36), 7572–7580 (1993).
    [CrossRef] [PubMed]
  16. A. V. Ilyenkov, A. I. Khizniak, L. V. Kreminskaya, M. S. Soskin, and M. V. Vasnetsov, “Birth an evolution of wave-front dislocations in a laser beam passed through a photorefractive LiNbO3:Fe crystal,” Appl. Phys. B 62(5), 465–471 (1996).
    [CrossRef]
  17. E. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10(11), 2085–2092 (1993).
    [CrossRef]
  18. M. Carrascosa, J. Villarroel, J. Carnicero, A. García-Cabañes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damage in LiNbO3,” Opt. Express 16(1), 115–120 (2008).
    [CrossRef] [PubMed]
  19. F. Devaux, J. Safioui, M. Chauvet, and R. Passier, “Two-photoactive-center model applied to photorefractive self-focusing in biased LiNbO3,” Phys. Rev. 81(1), 013825 (2010).
    [CrossRef]
  20. J. Carnicero, O. Caballero, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in LiNbO3 analyses under the two-center model,” Appl. Phys. B 79(3), 351–358 (2004).
    [CrossRef]
  21. N. Iyi, K. Kitamura, F. Izumi, K. Yamamoto, T. Hayasi, H. Asano, and S. Kimura, “Comparative study of defects structures in lithium niobate with diferents compositions,” J. Solid State Chem. 101(2), 340–352 (1992).
    [CrossRef]
  22. N. Zotov, H. Boysen, F. Frey, T. Metzger, and E. Born, “Cation substitution models of congruent LiNbO3 investigated by X-ray and neutron powder diffraction,” J. Phys. Chem. Solids 55(2), 145–152 (1994).
    [CrossRef]
  23. M. Simon, St. Wevering, K. Buse, and E. Kratzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D 30(1), 144–149 (1997).
    [CrossRef]
  24. P. Herth, D. Schaniel, Th. Woike, T. Granzow, M. Imlau, and E. Krätzig, “Polarons generated by laser pulses in doped LiNbO3,” Phys. Rev. 71(12), 125128 (2005).
    [CrossRef]
  25. G. de la Paliza, O. Caballero, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in proton exchanged LiNbO3 waveguides,” Appl. Phys. B 76, 555–559 (2003).
  26. O. Caballero-Calero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light-intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102(7), 074509 (2007).
    [CrossRef]
  27. F. Luedtke, J. Villarroel, A. García-Cabañes, K. Buse, and M. Carrascosa, “Correlation between photorefractive index changes and optical damage thresholds in z-cut proton-exchanged-LiNbO3 waveguides,” Opt. Express 17(2), 658–665 (2009).
    [CrossRef] [PubMed]
  28. J. Villarroel, M. Carrascosa, A. García-Cabañes, and J. M. Cabrera, “Light intensity dependence of holographic response and dark decays in α-phase PE:LiNbO3 waveguides,” J. Opt. A, Pure Appl. Opt. 10(10), 104008 (2008).
    [CrossRef]
  29. D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
    [CrossRef]
  30. O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys. Condens. Matter 21(12), 123201 (2009).
    [CrossRef] [PubMed]
  31. G. Lifante, Integrated Photonics: Fundamentals (Wiley, Wiltshire, 2003).
  32. J. Ramiro-Diaz and A. A. de Velasco, “Ortogonal mode decomposition for efficient BPM applied to optical waveguides,” Ferroelectrics 390(1), 71–78 (2009).
    [CrossRef]
  33. F. Luedtke, Optical damage in proton-exchanged waveguides in lithium niobate crystals, Diploma Thesis, Bonn University (2008).
  34. R. Göring, Y. L. Zhan, and St. Steinberg, “Photoconductivity and photovoltaic behaviour of LiNbO3 and LiNbO3 waveguides at high optical intensities,” Appl. Phys., A Mater. Sci. Process. 55, 97–100 (1992).
    [CrossRef]

2010 (1)

F. Devaux, J. Safioui, M. Chauvet, and R. Passier, “Two-photoactive-center model applied to photorefractive self-focusing in biased LiNbO3,” Phys. Rev. 81(1), 013825 (2010).
[CrossRef]

2009 (4)

M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3(9), 510–513 (2009).
[CrossRef]

F. Luedtke, J. Villarroel, A. García-Cabañes, K. Buse, and M. Carrascosa, “Correlation between photorefractive index changes and optical damage thresholds in z-cut proton-exchanged-LiNbO3 waveguides,” Opt. Express 17(2), 658–665 (2009).
[CrossRef] [PubMed]

O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys. Condens. Matter 21(12), 123201 (2009).
[CrossRef] [PubMed]

J. Ramiro-Diaz and A. A. de Velasco, “Ortogonal mode decomposition for efficient BPM applied to optical waveguides,” Ferroelectrics 390(1), 71–78 (2009).
[CrossRef]

2008 (2)

J. Villarroel, M. Carrascosa, A. García-Cabañes, and J. M. Cabrera, “Light intensity dependence of holographic response and dark decays in α-phase PE:LiNbO3 waveguides,” J. Opt. A, Pure Appl. Opt. 10(10), 104008 (2008).
[CrossRef]

M. Carrascosa, J. Villarroel, J. Carnicero, A. García-Cabañes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damage in LiNbO3,” Opt. Express 16(1), 115–120 (2008).
[CrossRef] [PubMed]

2007 (4)

M. Falk, T. Woike, and K. Buse, “Reduction of optical damage in lithium niobate crystals by thermo-electric oxidation,” Appl. Phys. Lett. 90(25), 847–849 (2007).
[CrossRef]

J. Carnicero, M. Carrascosa, A. Méndez, A. García-Cabañes, and J. M. Cabrera, “Optical damage control via the Fe2+/Fe3+ ratio in proton-exchanged LiNbO3 waveguides,” Opt. Lett. 32(16), 2294–2296 (2007).
[CrossRef] [PubMed]

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007).
[CrossRef]

O. Caballero-Calero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light-intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102(7), 074509 (2007).
[CrossRef]

2005 (1)

P. Herth, D. Schaniel, Th. Woike, T. Granzow, M. Imlau, and E. Krätzig, “Polarons generated by laser pulses in doped LiNbO3,” Phys. Rev. 71(12), 125128 (2005).
[CrossRef]

2004 (1)

J. Carnicero, O. Caballero, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in LiNbO3 analyses under the two-center model,” Appl. Phys. B 79(3), 351–358 (2004).
[CrossRef]

2003 (1)

G. de la Paliza, O. Caballero, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in proton exchanged LiNbO3 waveguides,” Appl. Phys. B 76, 555–559 (2003).

2001 (1)

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78(21), 3163–3165 (2001).
[CrossRef]

2000 (2)

J. Rams, A. Alcázar de Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178(1-3), 211–216 (2000).
[CrossRef]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[CrossRef]

1997 (2)

M. Simon, St. Wevering, K. Buse, and E. Kratzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D 30(1), 144–149 (1997).
[CrossRef]

O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3 and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997).
[CrossRef]

1996 (1)

A. V. Ilyenkov, A. I. Khizniak, L. V. Kreminskaya, M. S. Soskin, and M. V. Vasnetsov, “Birth an evolution of wave-front dislocations in a laser beam passed through a photorefractive LiNbO3:Fe crystal,” Appl. Phys. B 62(5), 465–471 (1996).
[CrossRef]

1994 (2)

T. Volk, N. Rubinina, and M. Wohlecke, “Optical-damage-resistant impurities in lithium-niobate,” J. Opt. Soc. Am. B 11(9), 1681–1687 (1994).
[CrossRef]

N. Zotov, H. Boysen, F. Frey, T. Metzger, and E. Born, “Cation substitution models of congruent LiNbO3 investigated by X-ray and neutron powder diffraction,” J. Phys. Chem. Solids 55(2), 145–152 (1994).
[CrossRef]

1993 (2)

1992 (2)

N. Iyi, K. Kitamura, F. Izumi, K. Yamamoto, T. Hayasi, H. Asano, and S. Kimura, “Comparative study of defects structures in lithium niobate with diferents compositions,” J. Solid State Chem. 101(2), 340–352 (1992).
[CrossRef]

R. Göring, Y. L. Zhan, and St. Steinberg, “Photoconductivity and photovoltaic behaviour of LiNbO3 and LiNbO3 waveguides at high optical intensities,” Appl. Phys., A Mater. Sci. Process. 55, 97–100 (1992).
[CrossRef]

1991 (1)

1984 (1)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[CrossRef]

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzik, R. G. Smith, A. A. Ballman, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[CrossRef]

de Velasco, A. A.

J. Ramiro-Diaz and A. A. de Velasco, “Ortogonal mode decomposition for efficient BPM applied to optical waveguides,” Ferroelectrics 390(1), 71–78 (2009).
[CrossRef]

Agulló-López, F.

J. Rams, A. Alcázar de Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178(1-3), 211–216 (2000).
[CrossRef]

Alcazar, A.

O. Caballero-Calero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light-intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102(7), 074509 (2007).
[CrossRef]

Alcázar de Velasco, A.

J. Rams, A. Alcázar de Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178(1-3), 211–216 (2000).
[CrossRef]

Asano, H.

N. Iyi, K. Kitamura, F. Izumi, K. Yamamoto, T. Hayasi, H. Asano, and S. Kimura, “Comparative study of defects structures in lithium niobate with diferents compositions,” J. Solid State Chem. 101(2), 340–352 (1992).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzik, R. G. Smith, A. A. Ballman, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[CrossRef]

Asobe, M.

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78(21), 3163–3165 (2001).
[CrossRef]

Ballman, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzik, R. G. Smith, A. A. Ballman, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[CrossRef]

Berben, D.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[CrossRef]

Born, E.

N. Zotov, H. Boysen, F. Frey, T. Metzger, and E. Born, “Cation substitution models of congruent LiNbO3 investigated by X-ray and neutron powder diffraction,” J. Phys. Chem. Solids 55(2), 145–152 (1994).
[CrossRef]

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzik, R. G. Smith, A. A. Ballman, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[CrossRef]

Boysen, H.

N. Zotov, H. Boysen, F. Frey, T. Metzger, and E. Born, “Cation substitution models of congruent LiNbO3 investigated by X-ray and neutron powder diffraction,” J. Phys. Chem. Solids 55(2), 145–152 (1994).
[CrossRef]

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[CrossRef]

Buse, K.

M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3(9), 510–513 (2009).
[CrossRef]

F. Luedtke, J. Villarroel, A. García-Cabañes, K. Buse, and M. Carrascosa, “Correlation between photorefractive index changes and optical damage thresholds in z-cut proton-exchanged-LiNbO3 waveguides,” Opt. Express 17(2), 658–665 (2009).
[CrossRef] [PubMed]

M. Falk, T. Woike, and K. Buse, “Reduction of optical damage in lithium niobate crystals by thermo-electric oxidation,” Appl. Phys. Lett. 90(25), 847–849 (2007).
[CrossRef]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[CrossRef]

M. Simon, St. Wevering, K. Buse, and E. Kratzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D 30(1), 144–149 (1997).
[CrossRef]

Caballero, O.

J. Carnicero, O. Caballero, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in LiNbO3 analyses under the two-center model,” Appl. Phys. B 79(3), 351–358 (2004).
[CrossRef]

G. de la Paliza, O. Caballero, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in proton exchanged LiNbO3 waveguides,” Appl. Phys. B 76, 555–559 (2003).

Caballero-Calero, O.

O. Caballero-Calero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light-intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102(7), 074509 (2007).
[CrossRef]

Cabrera, J. M.

J. Villarroel, M. Carrascosa, A. García-Cabañes, and J. M. Cabrera, “Light intensity dependence of holographic response and dark decays in α-phase PE:LiNbO3 waveguides,” J. Opt. A, Pure Appl. Opt. 10(10), 104008 (2008).
[CrossRef]

M. Carrascosa, J. Villarroel, J. Carnicero, A. García-Cabañes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damage in LiNbO3,” Opt. Express 16(1), 115–120 (2008).
[CrossRef] [PubMed]

J. Carnicero, M. Carrascosa, A. Méndez, A. García-Cabañes, and J. M. Cabrera, “Optical damage control via the Fe2+/Fe3+ ratio in proton-exchanged LiNbO3 waveguides,” Opt. Lett. 32(16), 2294–2296 (2007).
[CrossRef] [PubMed]

O. Caballero-Calero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light-intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102(7), 074509 (2007).
[CrossRef]

J. Carnicero, O. Caballero, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in LiNbO3 analyses under the two-center model,” Appl. Phys. B 79(3), 351–358 (2004).
[CrossRef]

G. de la Paliza, O. Caballero, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in proton exchanged LiNbO3 waveguides,” Appl. Phys. B 76, 555–559 (2003).

J. Rams, A. Alcázar de Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178(1-3), 211–216 (2000).
[CrossRef]

Carnicero, J.

M. Carrascosa, J. Villarroel, J. Carnicero, A. García-Cabañes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damage in LiNbO3,” Opt. Express 16(1), 115–120 (2008).
[CrossRef] [PubMed]

J. Carnicero, M. Carrascosa, A. Méndez, A. García-Cabañes, and J. M. Cabrera, “Optical damage control via the Fe2+/Fe3+ ratio in proton-exchanged LiNbO3 waveguides,” Opt. Lett. 32(16), 2294–2296 (2007).
[CrossRef] [PubMed]

O. Caballero-Calero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light-intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102(7), 074509 (2007).
[CrossRef]

J. Carnicero, O. Caballero, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in LiNbO3 analyses under the two-center model,” Appl. Phys. B 79(3), 351–358 (2004).
[CrossRef]

Carrascosa, M.

F. Luedtke, J. Villarroel, A. García-Cabañes, K. Buse, and M. Carrascosa, “Correlation between photorefractive index changes and optical damage thresholds in z-cut proton-exchanged-LiNbO3 waveguides,” Opt. Express 17(2), 658–665 (2009).
[CrossRef] [PubMed]

J. Villarroel, M. Carrascosa, A. García-Cabañes, and J. M. Cabrera, “Light intensity dependence of holographic response and dark decays in α-phase PE:LiNbO3 waveguides,” J. Opt. A, Pure Appl. Opt. 10(10), 104008 (2008).
[CrossRef]

M. Carrascosa, J. Villarroel, J. Carnicero, A. García-Cabañes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damage in LiNbO3,” Opt. Express 16(1), 115–120 (2008).
[CrossRef] [PubMed]

J. Carnicero, M. Carrascosa, A. Méndez, A. García-Cabañes, and J. M. Cabrera, “Optical damage control via the Fe2+/Fe3+ ratio in proton-exchanged LiNbO3 waveguides,” Opt. Lett. 32(16), 2294–2296 (2007).
[CrossRef] [PubMed]

O. Caballero-Calero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light-intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102(7), 074509 (2007).
[CrossRef]

J. Carnicero, O. Caballero, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in LiNbO3 analyses under the two-center model,” Appl. Phys. B 79(3), 351–358 (2004).
[CrossRef]

G. de la Paliza, O. Caballero, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in proton exchanged LiNbO3 waveguides,” Appl. Phys. B 76, 555–559 (2003).

J. Rams, A. Alcázar de Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178(1-3), 211–216 (2000).
[CrossRef]

Chauvet, M.

F. Devaux, J. Safioui, M. Chauvet, and R. Passier, “Two-photoactive-center model applied to photorefractive self-focusing in biased LiNbO3,” Phys. Rev. 81(1), 013825 (2010).
[CrossRef]

Chon, J. C.

de la Paliza, G.

O. Caballero-Calero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light-intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102(7), 074509 (2007).
[CrossRef]

G. de la Paliza, O. Caballero, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in proton exchanged LiNbO3 waveguides,” Appl. Phys. B 76, 555–559 (2003).

Devaux, F.

F. Devaux, J. Safioui, M. Chauvet, and R. Passier, “Two-photoactive-center model applied to photorefractive self-focusing in biased LiNbO3,” Phys. Rev. 81(1), 013825 (2010).
[CrossRef]

Digonnet, M. J. F.

Dziedzik, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzik, R. G. Smith, A. A. Ballman, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[CrossRef]

Eknoyan, O.

O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3 and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997).
[CrossRef]

Falk, M.

M. Falk, T. Woike, and K. Buse, “Reduction of optical damage in lithium niobate crystals by thermo-electric oxidation,” Appl. Phys. Lett. 90(25), 847–849 (2007).
[CrossRef]

Feigelson, R. S.

Fejer, M. M.

Feng, W.

Frey, F.

N. Zotov, H. Boysen, F. Frey, T. Metzger, and E. Born, “Cation substitution models of congruent LiNbO3 investigated by X-ray and neutron powder diffraction,” J. Phys. Chem. Solids 55(2), 145–152 (1994).
[CrossRef]

García-Cabañes, A.

F. Luedtke, J. Villarroel, A. García-Cabañes, K. Buse, and M. Carrascosa, “Correlation between photorefractive index changes and optical damage thresholds in z-cut proton-exchanged-LiNbO3 waveguides,” Opt. Express 17(2), 658–665 (2009).
[CrossRef] [PubMed]

J. Villarroel, M. Carrascosa, A. García-Cabañes, and J. M. Cabrera, “Light intensity dependence of holographic response and dark decays in α-phase PE:LiNbO3 waveguides,” J. Opt. A, Pure Appl. Opt. 10(10), 104008 (2008).
[CrossRef]

M. Carrascosa, J. Villarroel, J. Carnicero, A. García-Cabañes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damage in LiNbO3,” Opt. Express 16(1), 115–120 (2008).
[CrossRef] [PubMed]

J. Carnicero, M. Carrascosa, A. Méndez, A. García-Cabañes, and J. M. Cabrera, “Optical damage control via the Fe2+/Fe3+ ratio in proton-exchanged LiNbO3 waveguides,” Opt. Lett. 32(16), 2294–2296 (2007).
[CrossRef] [PubMed]

O. Caballero-Calero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light-intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102(7), 074509 (2007).
[CrossRef]

G. de la Paliza, O. Caballero, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in proton exchanged LiNbO3 waveguides,” Appl. Phys. B 76, 555–559 (2003).

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[CrossRef]

Göring, R.

R. Göring, Y. L. Zhan, and St. Steinberg, “Photoconductivity and photovoltaic behaviour of LiNbO3 and LiNbO3 waveguides at high optical intensities,” Appl. Phys., A Mater. Sci. Process. 55, 97–100 (1992).
[CrossRef]

Granzow, T.

P. Herth, D. Schaniel, Th. Woike, T. Granzow, M. Imlau, and E. Krätzig, “Polarons generated by laser pulses in doped LiNbO3,” Phys. Rev. 71(12), 125128 (2005).
[CrossRef]

Haertle, D.

M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3(9), 510–513 (2009).
[CrossRef]

Hayasi, T.

N. Iyi, K. Kitamura, F. Izumi, K. Yamamoto, T. Hayasi, H. Asano, and S. Kimura, “Comparative study of defects structures in lithium niobate with diferents compositions,” J. Solid State Chem. 101(2), 340–352 (1992).
[CrossRef]

Herth, P.

P. Herth, D. Schaniel, Th. Woike, T. Granzow, M. Imlau, and E. Krätzig, “Polarons generated by laser pulses in doped LiNbO3,” Phys. Rev. 71(12), 125128 (2005).
[CrossRef]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[CrossRef]

Hum, D. S.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007).
[CrossRef]

Ilyenkov, A. V.

A. V. Ilyenkov, A. I. Khizniak, L. V. Kreminskaya, M. S. Soskin, and M. V. Vasnetsov, “Birth an evolution of wave-front dislocations in a laser beam passed through a photorefractive LiNbO3:Fe crystal,” Appl. Phys. B 62(5), 465–471 (1996).
[CrossRef]

Imlau, M.

O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys. Condens. Matter 21(12), 123201 (2009).
[CrossRef] [PubMed]

P. Herth, D. Schaniel, Th. Woike, T. Granzow, M. Imlau, and E. Krätzig, “Polarons generated by laser pulses in doped LiNbO3,” Phys. Rev. 71(12), 125128 (2005).
[CrossRef]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[CrossRef]

Itoh, H.

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78(21), 3163–3165 (2001).
[CrossRef]

Iyi, N.

N. Iyi, K. Kitamura, F. Izumi, K. Yamamoto, T. Hayasi, H. Asano, and S. Kimura, “Comparative study of defects structures in lithium niobate with diferents compositions,” J. Solid State Chem. 101(2), 340–352 (1992).
[CrossRef]

Izumi, F.

N. Iyi, K. Kitamura, F. Izumi, K. Yamamoto, T. Hayasi, H. Asano, and S. Kimura, “Comparative study of defects structures in lithium niobate with diferents compositions,” J. Solid State Chem. 101(2), 340–352 (1992).
[CrossRef]

Jermann, E.

Khizniak, A. I.

A. V. Ilyenkov, A. I. Khizniak, L. V. Kreminskaya, M. S. Soskin, and M. V. Vasnetsov, “Birth an evolution of wave-front dislocations in a laser beam passed through a photorefractive LiNbO3:Fe crystal,” Appl. Phys. B 62(5), 465–471 (1996).
[CrossRef]

Kimura, S.

N. Iyi, K. Kitamura, F. Izumi, K. Yamamoto, T. Hayasi, H. Asano, and S. Kimura, “Comparative study of defects structures in lithium niobate with diferents compositions,” J. Solid State Chem. 101(2), 340–352 (1992).
[CrossRef]

Kitamura, K.

N. Iyi, K. Kitamura, F. Izumi, K. Yamamoto, T. Hayasi, H. Asano, and S. Kimura, “Comparative study of defects structures in lithium niobate with diferents compositions,” J. Solid State Chem. 101(2), 340–352 (1992).
[CrossRef]

Kösters, M.

M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3(9), 510–513 (2009).
[CrossRef]

Kratzig, E.

M. Simon, St. Wevering, K. Buse, and E. Kratzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D 30(1), 144–149 (1997).
[CrossRef]

Krätzig, E.

P. Herth, D. Schaniel, Th. Woike, T. Granzow, M. Imlau, and E. Krätzig, “Polarons generated by laser pulses in doped LiNbO3,” Phys. Rev. 71(12), 125128 (2005).
[CrossRef]

Kreminskaya, L. V.

A. V. Ilyenkov, A. I. Khizniak, L. V. Kreminskaya, M. S. Soskin, and M. V. Vasnetsov, “Birth an evolution of wave-front dislocations in a laser beam passed through a photorefractive LiNbO3:Fe crystal,” Appl. Phys. B 62(5), 465–471 (1996).
[CrossRef]

Luedtke, F.

Matous, W.

O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3 and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997).
[CrossRef]

Méndez, A.

Merschjann, C.

O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys. Condens. Matter 21(12), 123201 (2009).
[CrossRef] [PubMed]

Metzger, T.

N. Zotov, H. Boysen, F. Frey, T. Metzger, and E. Born, “Cation substitution models of congruent LiNbO3 investigated by X-ray and neutron powder diffraction,” J. Phys. Chem. Solids 55(2), 145–152 (1994).
[CrossRef]

Mickelson, A. R.

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzik, R. G. Smith, A. A. Ballman, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[CrossRef]

Otten, J.

Ottinger, T.

O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3 and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997).
[CrossRef]

Passier, R.

F. Devaux, J. Safioui, M. Chauvet, and R. Passier, “Two-photoactive-center model applied to photorefractive self-focusing in biased LiNbO3,” Phys. Rev. 81(1), 013825 (2010).
[CrossRef]

Ramiro-Diaz, J.

J. Ramiro-Diaz and A. A. de Velasco, “Ortogonal mode decomposition for efficient BPM applied to optical waveguides,” Ferroelectrics 390(1), 71–78 (2009).
[CrossRef]

Rams, J.

J. Rams, A. Alcázar de Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178(1-3), 211–216 (2000).
[CrossRef]

Rubinina, N.

Safioui, J.

F. Devaux, J. Safioui, M. Chauvet, and R. Passier, “Two-photoactive-center model applied to photorefractive self-focusing in biased LiNbO3,” Phys. Rev. 81(1), 013825 (2010).
[CrossRef]

Schaniel, D.

P. Herth, D. Schaniel, Th. Woike, T. Granzow, M. Imlau, and E. Krätzig, “Polarons generated by laser pulses in doped LiNbO3,” Phys. Rev. 71(12), 125128 (2005).
[CrossRef]

Schirmer, O. F.

O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys. Condens. Matter 21(12), 123201 (2009).
[CrossRef] [PubMed]

Schoke, B.

O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys. Condens. Matter 21(12), 123201 (2009).
[CrossRef] [PubMed]

Shaw, H. J.

Simon, M.

M. Simon, St. Wevering, K. Buse, and E. Kratzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D 30(1), 144–149 (1997).
[CrossRef]

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzik, R. G. Smith, A. A. Ballman, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[CrossRef]

Soskin, M. S.

A. V. Ilyenkov, A. I. Khizniak, L. V. Kreminskaya, M. S. Soskin, and M. V. Vasnetsov, “Birth an evolution of wave-front dislocations in a laser beam passed through a photorefractive LiNbO3:Fe crystal,” Appl. Phys. B 62(5), 465–471 (1996).
[CrossRef]

Steinberg, St.

R. Göring, Y. L. Zhan, and St. Steinberg, “Photoconductivity and photovoltaic behaviour of LiNbO3 and LiNbO3 waveguides at high optical intensities,” Appl. Phys., A Mater. Sci. Process. 55, 97–100 (1992).
[CrossRef]

Sturman, B.

M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3(9), 510–513 (2009).
[CrossRef]

Suzuki, H.

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78(21), 3163–3165 (2001).
[CrossRef]

Tadanaga, O.

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78(21), 3163–3165 (2001).
[CrossRef]

Taylor, H. F.

O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3 and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997).
[CrossRef]

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[CrossRef]

Vasnetsov, M. V.

A. V. Ilyenkov, A. I. Khizniak, L. V. Kreminskaya, M. S. Soskin, and M. V. Vasnetsov, “Birth an evolution of wave-front dislocations in a laser beam passed through a photorefractive LiNbO3:Fe crystal,” Appl. Phys. B 62(5), 465–471 (1996).
[CrossRef]

Villarroel, J.

Volk, T.

Werheit, P.

M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3(9), 510–513 (2009).
[CrossRef]

Wevering, S.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[CrossRef]

Wevering, St.

M. Simon, St. Wevering, K. Buse, and E. Kratzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D 30(1), 144–149 (1997).
[CrossRef]

Wohlecke, M.

Woike, T.

M. Falk, T. Woike, and K. Buse, “Reduction of optical damage in lithium niobate crystals by thermo-electric oxidation,” Appl. Phys. Lett. 90(25), 847–849 (2007).
[CrossRef]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[CrossRef]

Woike, Th.

P. Herth, D. Schaniel, Th. Woike, T. Granzow, M. Imlau, and E. Krätzig, “Polarons generated by laser pulses in doped LiNbO3,” Phys. Rev. 71(12), 125128 (2005).
[CrossRef]

Yamamoto, K.

N. Iyi, K. Kitamura, F. Izumi, K. Yamamoto, T. Hayasi, H. Asano, and S. Kimura, “Comparative study of defects structures in lithium niobate with diferents compositions,” J. Solid State Chem. 101(2), 340–352 (1992).
[CrossRef]

Yanagawa, T.

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78(21), 3163–3165 (2001).
[CrossRef]

Young, W. M.

Zhan, Y. L.

R. Göring, Y. L. Zhan, and St. Steinberg, “Photoconductivity and photovoltaic behaviour of LiNbO3 and LiNbO3 waveguides at high optical intensities,” Appl. Phys., A Mater. Sci. Process. 55, 97–100 (1992).
[CrossRef]

Zotov, N.

N. Zotov, H. Boysen, F. Frey, T. Metzger, and E. Born, “Cation substitution models of congruent LiNbO3 investigated by X-ray and neutron powder diffraction,” J. Phys. Chem. Solids 55(2), 145–152 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (3)

A. V. Ilyenkov, A. I. Khizniak, L. V. Kreminskaya, M. S. Soskin, and M. V. Vasnetsov, “Birth an evolution of wave-front dislocations in a laser beam passed through a photorefractive LiNbO3:Fe crystal,” Appl. Phys. B 62(5), 465–471 (1996).
[CrossRef]

J. Carnicero, O. Caballero, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in LiNbO3 analyses under the two-center model,” Appl. Phys. B 79(3), 351–358 (2004).
[CrossRef]

G. de la Paliza, O. Caballero, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in proton exchanged LiNbO3 waveguides,” Appl. Phys. B 76, 555–559 (2003).

Appl. Phys. Lett. (5)

M. Falk, T. Woike, and K. Buse, “Reduction of optical damage in lithium niobate crystals by thermo-electric oxidation,” Appl. Phys. Lett. 90(25), 847–849 (2007).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzik, R. G. Smith, A. A. Ballman, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[CrossRef]

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78(21), 3163–3165 (2001).
[CrossRef]

O. Eknoyan, H. F. Taylor, W. Matous, and T. Ottinger, “Comparison of photorefractive damage effects in LiNbO3, LiTaO3 and Ba1-xSrxTiyNb2-yO6 optical waveguides at 488 nm wavelength,” Appl. Phys. Lett. 71, 3051–3053 (1997).
[CrossRef]

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

R. Göring, Y. L. Zhan, and St. Steinberg, “Photoconductivity and photovoltaic behaviour of LiNbO3 and LiNbO3 waveguides at high optical intensities,” Appl. Phys., A Mater. Sci. Process. 55, 97–100 (1992).
[CrossRef]

C. R. Phys. (1)

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007).
[CrossRef]

Ferroelectrics (1)

J. Ramiro-Diaz and A. A. de Velasco, “Ortogonal mode decomposition for efficient BPM applied to optical waveguides,” Ferroelectrics 390(1), 71–78 (2009).
[CrossRef]

J. Appl. Phys. (2)

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[CrossRef]

O. Caballero-Calero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light-intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102(7), 074509 (2007).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

J. Villarroel, M. Carrascosa, A. García-Cabañes, and J. M. Cabrera, “Light intensity dependence of holographic response and dark decays in α-phase PE:LiNbO3 waveguides,” J. Opt. A, Pure Appl. Opt. 10(10), 104008 (2008).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Solids (1)

N. Zotov, H. Boysen, F. Frey, T. Metzger, and E. Born, “Cation substitution models of congruent LiNbO3 investigated by X-ray and neutron powder diffraction,” J. Phys. Chem. Solids 55(2), 145–152 (1994).
[CrossRef]

J. Phys. Condens. Matter (1)

O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys. Condens. Matter 21(12), 123201 (2009).
[CrossRef] [PubMed]

J. Phys. D (1)

M. Simon, St. Wevering, K. Buse, and E. Kratzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D 30(1), 144–149 (1997).
[CrossRef]

J. Solid State Chem. (1)

N. Iyi, K. Kitamura, F. Izumi, K. Yamamoto, T. Hayasi, H. Asano, and S. Kimura, “Comparative study of defects structures in lithium niobate with diferents compositions,” J. Solid State Chem. 101(2), 340–352 (1992).
[CrossRef]

Nat. Photonics (1)

M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3(9), 510–513 (2009).
[CrossRef]

Opt. Commun. (1)

J. Rams, A. Alcázar de Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178(1-3), 211–216 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. (2)

F. Devaux, J. Safioui, M. Chauvet, and R. Passier, “Two-photoactive-center model applied to photorefractive self-focusing in biased LiNbO3,” Phys. Rev. 81(1), 013825 (2010).
[CrossRef]

P. Herth, D. Schaniel, Th. Woike, T. Granzow, M. Imlau, and E. Krätzig, “Polarons generated by laser pulses in doped LiNbO3,” Phys. Rev. 71(12), 125128 (2005).
[CrossRef]

Other (5)

P. Gunter, and J. P. Huignard, eds., Photorefractive Materials and Their Applications (3 Vols.) (Springer Series in Optical Sciences, New York, 2006).

T. Volk, M. Wöhlecke, and N. Rubinina, “Optical damage resistance in lithium niobate”, in Photorefractive materials and their applications 2, Materials, P. Günter and J. P. Huignard, eds, (Springer, 2007), pp165–203.

D. Kip, and M. Wesner, “Photorefractive waveguides”, in Photorefractive materials and their applications 1, Basic effects, P. Günter and J.P. Huignard, eds, (Springer, 2006), pp 281–315.

G. Lifante, Integrated Photonics: Fundamentals (Wiley, Wiltshire, 2003).

F. Luedtke, Optical damage in proton-exchanged waveguides in lithium niobate crystals, Diploma Thesis, Bonn University (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Logarithmic plot of the calculated saturating index change |Δn sat| versus the beam intensity inside the waveguide (continuous line). The vertical dashed line indicates the onset of the two-centre regime. Experimental data (solid circles) have been measured in proton-exchanged LiNbO3 waveguides (redrawn from [27] and [33]). For I>6 × 102 W/cm2, the photorefractive beam-distortion makes unreliable any intensity measurement. The theoretical curve has been calculated with material parameters of Table 1.

Fig. 2
Fig. 2

Logarithmic plot of the simulated (computed) electronic conductivity σ (dashed line, left axis) and photovoltaic current jpv (solid line, right axis) as a function of the beam intensity inside the waveguide with the same parameters of Fig. 1. For comparison, measured experimental data for jpv (I) are represented as solid circles in the inset together with the theoretical curve. To better appreciate the superlinearity we use here linear axis. In both, the figure and the inset, the dotted line represents the extrapolation of the linear dependence appearing at low I and the vertical line indicates the transition region from the one-center to the two-center regime.

Fig. 3
Fig. 3

Measured (a) and calculated (b) density plots of the transversal section of the beam obtained at the screen. c) Simulated (dashed lines) and measured (continuous lines) beam profiles corresponding to (a) and (b) spots respectively. The intensity of the incident beam inside the waveguide is indicated in the figure. The beam propagates 3 mm inside the guide, 3 mm through the prism coupler and 80 mm in the air. The configuration and the incident intensity are the same for the simulated and the experimental pictures.

Tables (1)

Tables Icon

Table 1 Material parameters used for the simulations.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n t = ( S 1 I + S t 1 ) N 1 + ( S 2 I + S t 2 ) N 2 S r n ( N D 1 N 1 + N D 2 N 2 ) ,
N 1 t = ( N D 1 N 1 ) t = ( S 1 I + S t 1 ) N 1 S r n ( N D 1 N 1 ) ,
N 2 t = ( N D 2 N 2 ) t = ( S 2 I + S t 2 ) N 2 S r n ( N D 2 N 2 ) ,
j = e I ( L 1 S N 1 1 + L 2 S 2 N 2 ) u c + e μ n E e D n ,
E = e ε ε 0 ( N D 1 N 1 + N D 2 N 2 ) .
j = e I ( L 1 S N 1 1 + L 2 S 2 N 2 ) + e μ n E
E s a t = e ( L 1 S 1 N 1 + L 2 S 2 N 2 ) I e μ n = j p v σ
Δ n s a t = 1 2 n 3 r 33 E s a t

Metrics