Abstract

We investigate the chromatic dispersion properties of silicon channel slot waveguides in a broad spectral region centered at ~1.5 μm. The variation of the dispersion profile as a function of the slot fill factor, i.e., the ratio between the slot and waveguide widths, is analyzed. Symmetric as well as asymmetric geometries are considered. In general, two different dispersion regimes are identified. Furthermore, our analysis shows that the zero and/or the peak dispersion wavelengths can be tailored by a careful control of the geometrical waveguide parameters including the cross-sectional area, the slot fill factor, and the slot asymmetry degree.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lipson, “Guiding, modulating, and emitting light on silicon – Challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [CrossRef]
  2. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [CrossRef]
  3. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [CrossRef]
  4. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
    [CrossRef]
  5. L. Yin, Q. Lin, and G. P. Agrawal, “Dispersion tailoring and soliton propagation in silicon waveguides,” Opt. Lett. 31(9), 1295–1297 (2006).
    [CrossRef] [PubMed]
  6. E. Dulkeith, F. Xia, L. Schares, W. M. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-9-3853 .
    [CrossRef] [PubMed]
  7. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4357 .
    [CrossRef] [PubMed]
  8. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [CrossRef] [PubMed]
  9. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004).
    [CrossRef] [PubMed]
  10. P. Sanchis, J. Blasco, A. Martínez, and J. Martí, “Design of silicon-based slot waveguide configurations for optimum nonlinear performance,” J. Lightwave Technol. 25(5), 1298–1305 (2007).
    [CrossRef]
  11. Z. Zheng, M. Iqbal, and J. Liu, “Dispersion characteristics of SOI-based slot optical waveguides,” Opt. Commun. 281(20), 5151–5155 (2008).
    [CrossRef]
  12. R. Spano, J. V. Galán, P. Sanchis, A. Martínez, J. Martí, and L. Pavesi, “Group velocity dispersion in horizontal slot waveguides filled by Si nanocrystals,” International Conf. Group IV Photon., 314–316 (2008).
  13. L. Zhang, Y. Yue, Y. Y. Xiao-Li, R. G. Beausoleil, and A. E. Willner, “Highly dispersive slot waveguides,” Opt. Express 17(9), 7095–7101 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-9-7095 .
    [CrossRef] [PubMed]
  14. P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Express 14(20), 9197–9202 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9197 .
    [CrossRef] [PubMed]
  15. C. Ma, Q. Zhang, and E. Van Keuren, “Analysis of symmetric and asymmetric nanoscale slab slot waveguides,” Opt. Commun. 282(2), 324–328 (2009).
    [CrossRef]
  16. K. Okamoto, “Beam propagation method,” in Fundamentals of Optical Waveguides (2000), Chap. 7, 273–281.
  17. B. Tatian, “Fitting refractive-index data with the Sellmeier dispersion formula,” Appl. Opt. 23(24), 4477–4485 (1984).
    [CrossRef] [PubMed]
  18. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1300 .
    [CrossRef] [PubMed]

2009 (2)

2008 (2)

2007 (1)

2006 (6)

2005 (1)

2004 (2)

2002 (1)

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

1984 (1)

Agrawal, G. P.

Almeida, V. R.

Anderson, P. A.

Asghari, M.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Barrios, C. A.

Beausoleil, R. G.

Blasco, J.

Day, I. E.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Drake, J.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Dulkeith, E.

Fathpour, S.

Foster, M. A.

Gaeta, A. L.

Green, W. M.

Harpin, A.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Iqbal, M.

Z. Zheng, M. Iqbal, and J. Liu, “Dispersion characteristics of SOI-based slot optical waveguides,” Opt. Commun. 281(20), 5151–5155 (2008).
[CrossRef]

Jalali, B.

Liang, T. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Lin, Q.

Lipson, M.

Liu, J.

Z. Zheng, M. Iqbal, and J. Liu, “Dispersion characteristics of SOI-based slot optical waveguides,” Opt. Commun. 281(20), 5151–5155 (2008).
[CrossRef]

Ma, C.

C. Ma, Q. Zhang, and E. Van Keuren, “Analysis of symmetric and asymmetric nanoscale slab slot waveguides,” Opt. Commun. 282(2), 324–328 (2009).
[CrossRef]

Manolatou, C.

Martí, J.

Martínez, A.

Panepucci, R. R.

Roberts, S. W.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Sanchis, P.

Schares, L.

Schmidt, B. S.

Sharping, J. E.

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

Tatian, B.

Tsang, H. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Turner, A. C.

Van Keuren, E.

C. Ma, Q. Zhang, and E. Van Keuren, “Analysis of symmetric and asymmetric nanoscale slab slot waveguides,” Opt. Commun. 282(2), 324–328 (2009).
[CrossRef]

Vlasov, Y. A.

Willner, A. E.

Wong, C. S.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Xia, F.

Xiao-Li, Y. Y.

Xu, Q.

Yin, L.

Yue, Y.

Zhang, L.

Zhang, Q.

C. Ma, Q. Zhang, and E. Van Keuren, “Analysis of symmetric and asymmetric nanoscale slab slot waveguides,” Opt. Commun. 282(2), 324–328 (2009).
[CrossRef]

Zheng, Z.

Z. Zheng, M. Iqbal, and J. Liu, “Dispersion characteristics of SOI-based slot optical waveguides,” Opt. Commun. 281(20), 5151–5155 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Commun. (2)

Z. Zheng, M. Iqbal, and J. Liu, “Dispersion characteristics of SOI-based slot optical waveguides,” Opt. Commun. 281(20), 5151–5155 (2008).
[CrossRef]

C. Ma, Q. Zhang, and E. Van Keuren, “Analysis of symmetric and asymmetric nanoscale slab slot waveguides,” Opt. Commun. 282(2), 324–328 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Other (2)

R. Spano, J. V. Galán, P. Sanchis, A. Martínez, J. Martí, and L. Pavesi, “Group velocity dispersion in horizontal slot waveguides filled by Si nanocrystals,” International Conf. Group IV Photon., 314–316 (2008).

K. Okamoto, “Beam propagation method,” in Fundamentals of Optical Waveguides (2000), Chap. 7, 273–281.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Conventional, (b) symmetric slot, and (c) asymmetric slot silicon-on-insulator channel waveguides with same cross sectional area. The electric field distribution of the quasi-TE mode in the x dimension corresponding to λ = 1.55 μm is plotted.

Fig. 2
Fig. 2

Group velocity dispersion for the fundamental quasi-TE mode of a silicon nanophotonic channel waveguide with a fixed aspect ratio of 1:1.5 and three different cross sectional areas. The intrinsic pure crystalline silicon dispersion is also plotted.

Fig. 3
Fig. 3

Group velocity dispersion profiles of symmetric slot waveguides for different slot fill factors. Three different cross-sectional areas have been considered: (a) 1 μm2, (b) 0.5 μm2, and (c) 0.1 μm2, with a fixed aspect ratio equal to 1:1.5. The dispersion curve of a conventional channel waveguide is also plotted.

Fig. 4
Fig. 4

Dispersion profiles of a slot waveguide for different asymmetry degrees. Three different cross-sectional areas are considered (a-c) 1 μm2, (d-f) 0.5 μm2, and (g-i) 0.1 μm2. Each row corresponds to a constant slot fill factor, 1:5, 1:10, and 1:25, respectively. The aspect ratio in all cases is 1:1.5.

Metrics