Abstract

We demonstrate continuous wave (CW) room temperature laser operation of the monoclinic Ho3+-doped KLu(WO4)2 crystal using a diode-pumped Tm3+:KLu(WO4)2 laser for in-band pumping. The slope efficiency achieved amounts to ~55% with respect to the absorbed power and the maximum output power of 648 mW is generated at 2078 nm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements,” Appl. Opt. 47(7), 944–956 (2008).
    [CrossRef] [PubMed]
  2. S. A. Pierre and D. M. Albala, “The future of lasers in urology,” World J. Urol. 25(3), 275–283 (2007).
    [CrossRef] [PubMed]
  3. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared lasing using 1.9-μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17(5), 723–728 (2000).
    [CrossRef]
  4. V. Sudesh and K. Asai, “Spectroscopic and diode-pumped-laser properties of Tm,Ho:YLF; Tm,Ho:LuLF; and Tm,Ho:LuAG crystals: a comparative study,” J. Opt. Soc. Am. B 20(9), 1829–1837 (2003).
    [CrossRef]
  5. E. Sani, A. Toncelli, M. Tonelli, N. Coluccelli, G. Galzerano, and P. Laporta, “Comparative analysis of Tm-Ho:KYF4 laser crystals,” Appl. Phys. B 81(6), 847–851 (2005).
    [CrossRef]
  6. K. Scholle and P. Fuhrberg, “In-band pumping of high-power Ho:YAG lasers by laser diodes at 1.9 µm,” in Conference on Lasers and Electro-Optics CLEO’08, Technical Digest (CD) (Optical Society of America, 2008), paper CTuAA1.
  7. M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
    [CrossRef]
  8. D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B 79(5), 559–561 (2004).
    [CrossRef]
  9. S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, E. K. Gorton, and J. A. C. Terry, “Intra-cavity side-pumped Ho:YAG laser,” Opt. Express 14(22), 10481–10487 (2006).
    [CrossRef] [PubMed]
  10. B. M. Walsh, “Review of Tm and Ho materials: spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
    [CrossRef]
  11. V. Petrov, M. C. Pujol, X. Mateos, Ó. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1(2), 179–212 (2007).
    [CrossRef]
  12. J. Liu, V. Petrov, X. Mateos, H. Zhang, and J. Wang, “Efficient high-power laser operation of Yb:KLu(WO4)2 crystals cut along the principal optical axes,” Opt. Lett. 32(14), 2016–2018 (2007).
    [CrossRef] [PubMed]
  13. X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
    [CrossRef]
  14. A. A. Kaminskii, A. G. Petrosyan, V. A. Fedorov, S. E. Sarkisov, V. V. Ryabchenkov, A. A. Pavlyuk, V. V. Lyubchenko, and I. V. Mochalov, “Two-micron stimulated emission by crystals with Ho3+ ions, based on the transition 5I7→5I8,” Sov. Phys. Dokl. 26, 846–848 (1981) (Transl. from Dokl. Akad. Nauk SSSR 260, 64–67 (1981)).
  15. A. A. Kaminskii, A. A. Pavlyuk, P. V. Klevtsov, I. F. Balashov, V. A. Berenberg, S. E. Sarkisov, V. A. Fedorov, M. V. Petrov, and V. V. Lyubchenko, “Stimulated radiation of monoclinic crystals of KY(WO4)2 and KGd(WO4)2 with Ln3+ ions,” Inorg. Mater. 13, 482–483 (1977) (transl. from Izv. Akad. Nauk. SSSR, Neorg. Mater. 13, 582–583 (1977)).
  16. A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 µm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
    [CrossRef]
  17. M. C. Pujol, C. Cascales, M. Rico, J. Massons, F. Diaz, P. Porcher, and C. Zaldo, “Measurement and crystal field analysis of energy levels of Ho3+ and Er3+ in KGd(WO4)2 single crystal,” J. Alloy. Comp. 323–324(1-2), 321–325 (2001).
    [CrossRef]
  18. M. C. Pujol, J. Massons, M. Aguilo, F. Diaz, M. Rico, and C. Zaldo, “Emission cross sections and spectroscopy of Ho3+ laser channels in KGd(WO4)2 single crystal,” IEEE J. Quantum Electron. 38(1), 93–100 (2002).
    [CrossRef]
  19. V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, J. Massons, M. Aguilo, and F. Diaz, “Near-infrared photoluminescence from Ho3+-doped monoclinic KLu(WO4)2 crystal codoped with Tm3+,” J. Lumin. 129(12), 1882–1885 (2009).
    [CrossRef]

2009 (3)

B. M. Walsh, “Review of Tm and Ho materials: spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[CrossRef]

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 µm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, J. Massons, M. Aguilo, and F. Diaz, “Near-infrared photoluminescence from Ho3+-doped monoclinic KLu(WO4)2 crystal codoped with Tm3+,” J. Lumin. 129(12), 1882–1885 (2009).
[CrossRef]

2008 (2)

2007 (3)

S. A. Pierre and D. M. Albala, “The future of lasers in urology,” World J. Urol. 25(3), 275–283 (2007).
[CrossRef] [PubMed]

V. Petrov, M. C. Pujol, X. Mateos, Ó. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1(2), 179–212 (2007).
[CrossRef]

J. Liu, V. Petrov, X. Mateos, H. Zhang, and J. Wang, “Efficient high-power laser operation of Yb:KLu(WO4)2 crystals cut along the principal optical axes,” Opt. Lett. 32(14), 2016–2018 (2007).
[CrossRef] [PubMed]

2006 (2)

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, E. K. Gorton, and J. A. C. Terry, “Intra-cavity side-pumped Ho:YAG laser,” Opt. Express 14(22), 10481–10487 (2006).
[CrossRef] [PubMed]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

2005 (1)

E. Sani, A. Toncelli, M. Tonelli, N. Coluccelli, G. Galzerano, and P. Laporta, “Comparative analysis of Tm-Ho:KYF4 laser crystals,” Appl. Phys. B 81(6), 847–851 (2005).
[CrossRef]

2004 (1)

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B 79(5), 559–561 (2004).
[CrossRef]

2003 (1)

2002 (1)

M. C. Pujol, J. Massons, M. Aguilo, F. Diaz, M. Rico, and C. Zaldo, “Emission cross sections and spectroscopy of Ho3+ laser channels in KGd(WO4)2 single crystal,” IEEE J. Quantum Electron. 38(1), 93–100 (2002).
[CrossRef]

2001 (1)

M. C. Pujol, C. Cascales, M. Rico, J. Massons, F. Diaz, P. Porcher, and C. Zaldo, “Measurement and crystal field analysis of energy levels of Ho3+ and Er3+ in KGd(WO4)2 single crystal,” J. Alloy. Comp. 323–324(1-2), 321–325 (2001).
[CrossRef]

2000 (1)

1981 (1)

A. A. Kaminskii, A. G. Petrosyan, V. A. Fedorov, S. E. Sarkisov, V. V. Ryabchenkov, A. A. Pavlyuk, V. V. Lyubchenko, and I. V. Mochalov, “Two-micron stimulated emission by crystals with Ho3+ ions, based on the transition 5I7→5I8,” Sov. Phys. Dokl. 26, 846–848 (1981) (Transl. from Dokl. Akad. Nauk SSSR 260, 64–67 (1981)).

1977 (1)

A. A. Kaminskii, A. A. Pavlyuk, P. V. Klevtsov, I. F. Balashov, V. A. Berenberg, S. E. Sarkisov, V. A. Fedorov, M. V. Petrov, and V. V. Lyubchenko, “Stimulated radiation of monoclinic crystals of KY(WO4)2 and KGd(WO4)2 with Ln3+ ions,” Inorg. Mater. 13, 482–483 (1977) (transl. from Izv. Akad. Nauk. SSSR, Neorg. Mater. 13, 582–583 (1977)).

Abdolvand, A.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B 79(5), 559–561 (2004).
[CrossRef]

Aguilo, M.

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, J. Massons, M. Aguilo, and F. Diaz, “Near-infrared photoluminescence from Ho3+-doped monoclinic KLu(WO4)2 crystal codoped with Tm3+,” J. Lumin. 129(12), 1882–1885 (2009).
[CrossRef]

M. C. Pujol, J. Massons, M. Aguilo, F. Diaz, M. Rico, and C. Zaldo, “Emission cross sections and spectroscopy of Ho3+ laser channels in KGd(WO4)2 single crystal,” IEEE J. Quantum Electron. 38(1), 93–100 (2002).
[CrossRef]

Aguiló, M.

V. Petrov, M. C. Pujol, X. Mateos, Ó. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1(2), 179–212 (2007).
[CrossRef]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Albala, D. M.

S. A. Pierre and D. M. Albala, “The future of lasers in urology,” World J. Urol. 25(3), 275–283 (2007).
[CrossRef] [PubMed]

Asai, K.

Balashov, I. F.

A. A. Kaminskii, A. A. Pavlyuk, P. V. Klevtsov, I. F. Balashov, V. A. Berenberg, S. E. Sarkisov, V. A. Fedorov, M. V. Petrov, and V. V. Lyubchenko, “Stimulated radiation of monoclinic crystals of KY(WO4)2 and KGd(WO4)2 with Ln3+ ions,” Inorg. Mater. 13, 482–483 (1977) (transl. from Izv. Akad. Nauk. SSSR, Neorg. Mater. 13, 582–583 (1977)).

Barnes, B. W.

Berenberg, V. A.

A. A. Kaminskii, A. A. Pavlyuk, P. V. Klevtsov, I. F. Balashov, V. A. Berenberg, S. E. Sarkisov, V. A. Fedorov, M. V. Petrov, and V. V. Lyubchenko, “Stimulated radiation of monoclinic crystals of KY(WO4)2 and KGd(WO4)2 with Ln3+ ions,” Inorg. Mater. 13, 482–483 (1977) (transl. from Izv. Akad. Nauk. SSSR, Neorg. Mater. 13, 582–583 (1977)).

Betterton, J. G.

Beyon, J. Y.

Brown, C. T. A.

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 µm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

Budni, P. A.

Carvajal, J. J.

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, J. Massons, M. Aguilo, and F. Diaz, “Near-infrared photoluminescence from Ho3+-doped monoclinic KLu(WO4)2 crystal codoped with Tm3+,” J. Lumin. 129(12), 1882–1885 (2009).
[CrossRef]

Cascales, C.

M. C. Pujol, C. Cascales, M. Rico, J. Massons, F. Diaz, P. Porcher, and C. Zaldo, “Measurement and crystal field analysis of energy levels of Ho3+ and Er3+ in KGd(WO4)2 single crystal,” J. Alloy. Comp. 323–324(1-2), 321–325 (2001).
[CrossRef]

Chicklis, E. P.

Clarkson, W. A.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, E. K. Gorton, and J. A. C. Terry, “Intra-cavity side-pumped Ho:YAG laser,” Opt. Express 14(22), 10481–10487 (2006).
[CrossRef] [PubMed]

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B 79(5), 559–561 (2004).
[CrossRef]

Coluccelli, N.

E. Sani, A. Toncelli, M. Tonelli, N. Coluccelli, G. Galzerano, and P. Laporta, “Comparative analysis of Tm-Ho:KYF4 laser crystals,” Appl. Phys. B 81(6), 847–851 (2005).
[CrossRef]

Cooper, L. J.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B 79(5), 559–561 (2004).
[CrossRef]

Davis, K. J.

Diaz, F.

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, J. Massons, M. Aguilo, and F. Diaz, “Near-infrared photoluminescence from Ho3+-doped monoclinic KLu(WO4)2 crystal codoped with Tm3+,” J. Lumin. 129(12), 1882–1885 (2009).
[CrossRef]

M. C. Pujol, J. Massons, M. Aguilo, F. Diaz, M. Rico, and C. Zaldo, “Emission cross sections and spectroscopy of Ho3+ laser channels in KGd(WO4)2 single crystal,” IEEE J. Quantum Electron. 38(1), 93–100 (2002).
[CrossRef]

M. C. Pujol, C. Cascales, M. Rico, J. Massons, F. Diaz, P. Porcher, and C. Zaldo, “Measurement and crystal field analysis of energy levels of Ho3+ and Er3+ in KGd(WO4)2 single crystal,” J. Alloy. Comp. 323–324(1-2), 321–325 (2001).
[CrossRef]

Díaz, F.

V. Petrov, M. C. Pujol, X. Mateos, Ó. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1(2), 179–212 (2007).
[CrossRef]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Eichhorn, M.

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[CrossRef]

Fedorov, V. A.

A. A. Kaminskii, A. G. Petrosyan, V. A. Fedorov, S. E. Sarkisov, V. V. Ryabchenkov, A. A. Pavlyuk, V. V. Lyubchenko, and I. V. Mochalov, “Two-micron stimulated emission by crystals with Ho3+ ions, based on the transition 5I7→5I8,” Sov. Phys. Dokl. 26, 846–848 (1981) (Transl. from Dokl. Akad. Nauk SSSR 260, 64–67 (1981)).

A. A. Kaminskii, A. A. Pavlyuk, P. V. Klevtsov, I. F. Balashov, V. A. Berenberg, S. E. Sarkisov, V. A. Fedorov, M. V. Petrov, and V. V. Lyubchenko, “Stimulated radiation of monoclinic crystals of KY(WO4)2 and KGd(WO4)2 with Ln3+ ions,” Inorg. Mater. 13, 482–483 (1977) (transl. from Izv. Akad. Nauk. SSSR, Neorg. Mater. 13, 582–583 (1977)).

Fusari, F.

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 µm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

Galan, M.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Galzerano, G.

E. Sani, A. Toncelli, M. Tonelli, N. Coluccelli, G. Galzerano, and P. Laporta, “Comparative analysis of Tm-Ho:KYF4 laser crystals,” Appl. Phys. B 81(6), 847–851 (2005).
[CrossRef]

Gibert, F.

Gorton, E. K.

Griebner, U.

V. Petrov, M. C. Pujol, X. Mateos, Ó. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1(2), 179–212 (2007).
[CrossRef]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Ismail, S.

Jambunathan, V.

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, J. Massons, M. Aguilo, and F. Diaz, “Near-infrared photoluminescence from Ho3+-doped monoclinic KLu(WO4)2 crystal codoped with Tm3+,” J. Lumin. 129(12), 1882–1885 (2009).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, A. G. Petrosyan, V. A. Fedorov, S. E. Sarkisov, V. V. Ryabchenkov, A. A. Pavlyuk, V. V. Lyubchenko, and I. V. Mochalov, “Two-micron stimulated emission by crystals with Ho3+ ions, based on the transition 5I7→5I8,” Sov. Phys. Dokl. 26, 846–848 (1981) (Transl. from Dokl. Akad. Nauk SSSR 260, 64–67 (1981)).

A. A. Kaminskii, A. A. Pavlyuk, P. V. Klevtsov, I. F. Balashov, V. A. Berenberg, S. E. Sarkisov, V. A. Fedorov, M. V. Petrov, and V. V. Lyubchenko, “Stimulated radiation of monoclinic crystals of KY(WO4)2 and KGd(WO4)2 with Ln3+ ions,” Inorg. Mater. 13, 482–483 (1977) (transl. from Izv. Akad. Nauk. SSSR, Neorg. Mater. 13, 582–583 (1977)).

Kisel, V. E.

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 µm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

Klevtsov, P. V.

A. A. Kaminskii, A. A. Pavlyuk, P. V. Klevtsov, I. F. Balashov, V. A. Berenberg, S. E. Sarkisov, V. A. Fedorov, M. V. Petrov, and V. V. Lyubchenko, “Stimulated radiation of monoclinic crystals of KY(WO4)2 and KGd(WO4)2 with Ln3+ ions,” Inorg. Mater. 13, 482–483 (1977) (transl. from Izv. Akad. Nauk. SSSR, Neorg. Mater. 13, 582–583 (1977)).

Koch, G. J.

Kuleshov, N. V.

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 µm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

Kurilchik, S. V.

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 µm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

Lagatsky, A. A.

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 µm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

Laporta, P.

E. Sani, A. Toncelli, M. Tonelli, N. Coluccelli, G. Galzerano, and P. Laporta, “Comparative analysis of Tm-Ho:KYF4 laser crystals,” Appl. Phys. B 81(6), 847–851 (2005).
[CrossRef]

Lemons, M. L.

Liu, J.

J. Liu, V. Petrov, X. Mateos, H. Zhang, and J. Wang, “Efficient high-power laser operation of Yb:KLu(WO4)2 crystals cut along the principal optical axes,” Opt. Lett. 32(14), 2016–2018 (2007).
[CrossRef] [PubMed]

V. Petrov, M. C. Pujol, X. Mateos, Ó. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1(2), 179–212 (2007).
[CrossRef]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Lyubchenko, V. V.

A. A. Kaminskii, A. G. Petrosyan, V. A. Fedorov, S. E. Sarkisov, V. V. Ryabchenkov, A. A. Pavlyuk, V. V. Lyubchenko, and I. V. Mochalov, “Two-micron stimulated emission by crystals with Ho3+ ions, based on the transition 5I7→5I8,” Sov. Phys. Dokl. 26, 846–848 (1981) (Transl. from Dokl. Akad. Nauk SSSR 260, 64–67 (1981)).

A. A. Kaminskii, A. A. Pavlyuk, P. V. Klevtsov, I. F. Balashov, V. A. Berenberg, S. E. Sarkisov, V. A. Fedorov, M. V. Petrov, and V. V. Lyubchenko, “Stimulated radiation of monoclinic crystals of KY(WO4)2 and KGd(WO4)2 with Ln3+ ions,” Inorg. Mater. 13, 482–483 (1977) (transl. from Izv. Akad. Nauk. SSSR, Neorg. Mater. 13, 582–583 (1977)).

Mackenzie, J. I.

Massons, J.

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, J. Massons, M. Aguilo, and F. Diaz, “Near-infrared photoluminescence from Ho3+-doped monoclinic KLu(WO4)2 crystal codoped with Tm3+,” J. Lumin. 129(12), 1882–1885 (2009).
[CrossRef]

M. C. Pujol, J. Massons, M. Aguilo, F. Diaz, M. Rico, and C. Zaldo, “Emission cross sections and spectroscopy of Ho3+ laser channels in KGd(WO4)2 single crystal,” IEEE J. Quantum Electron. 38(1), 93–100 (2002).
[CrossRef]

M. C. Pujol, C. Cascales, M. Rico, J. Massons, F. Diaz, P. Porcher, and C. Zaldo, “Measurement and crystal field analysis of energy levels of Ho3+ and Er3+ in KGd(WO4)2 single crystal,” J. Alloy. Comp. 323–324(1-2), 321–325 (2001).
[CrossRef]

Mateos, X.

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, J. Massons, M. Aguilo, and F. Diaz, “Near-infrared photoluminescence from Ho3+-doped monoclinic KLu(WO4)2 crystal codoped with Tm3+,” J. Lumin. 129(12), 1882–1885 (2009).
[CrossRef]

J. Liu, V. Petrov, X. Mateos, H. Zhang, and J. Wang, “Efficient high-power laser operation of Yb:KLu(WO4)2 crystals cut along the principal optical axes,” Opt. Lett. 32(14), 2016–2018 (2007).
[CrossRef] [PubMed]

V. Petrov, M. C. Pujol, X. Mateos, Ó. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1(2), 179–212 (2007).
[CrossRef]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Miller, C. A.

Mochalov, I. V.

A. A. Kaminskii, A. G. Petrosyan, V. A. Fedorov, S. E. Sarkisov, V. V. Ryabchenkov, A. A. Pavlyuk, V. V. Lyubchenko, and I. V. Mochalov, “Two-micron stimulated emission by crystals with Ho3+ ions, based on the transition 5I7→5I8,” Sov. Phys. Dokl. 26, 846–848 (1981) (Transl. from Dokl. Akad. Nauk SSSR 260, 64–67 (1981)).

Modlin, E. A.

Mosto, J. R.

Pavlyuk, A. A.

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 µm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

A. A. Kaminskii, A. G. Petrosyan, V. A. Fedorov, S. E. Sarkisov, V. V. Ryabchenkov, A. A. Pavlyuk, V. V. Lyubchenko, and I. V. Mochalov, “Two-micron stimulated emission by crystals with Ho3+ ions, based on the transition 5I7→5I8,” Sov. Phys. Dokl. 26, 846–848 (1981) (Transl. from Dokl. Akad. Nauk SSSR 260, 64–67 (1981)).

A. A. Kaminskii, A. A. Pavlyuk, P. V. Klevtsov, I. F. Balashov, V. A. Berenberg, S. E. Sarkisov, V. A. Fedorov, M. V. Petrov, and V. V. Lyubchenko, “Stimulated radiation of monoclinic crystals of KY(WO4)2 and KGd(WO4)2 with Ln3+ ions,” Inorg. Mater. 13, 482–483 (1977) (transl. from Izv. Akad. Nauk. SSSR, Neorg. Mater. 13, 582–583 (1977)).

Petros, M.

Petrosyan, A. G.

A. A. Kaminskii, A. G. Petrosyan, V. A. Fedorov, S. E. Sarkisov, V. V. Ryabchenkov, A. A. Pavlyuk, V. V. Lyubchenko, and I. V. Mochalov, “Two-micron stimulated emission by crystals with Ho3+ ions, based on the transition 5I7→5I8,” Sov. Phys. Dokl. 26, 846–848 (1981) (Transl. from Dokl. Akad. Nauk SSSR 260, 64–67 (1981)).

Petrov, M. V.

A. A. Kaminskii, A. A. Pavlyuk, P. V. Klevtsov, I. F. Balashov, V. A. Berenberg, S. E. Sarkisov, V. A. Fedorov, M. V. Petrov, and V. V. Lyubchenko, “Stimulated radiation of monoclinic crystals of KY(WO4)2 and KGd(WO4)2 with Ln3+ ions,” Inorg. Mater. 13, 482–483 (1977) (transl. from Izv. Akad. Nauk. SSSR, Neorg. Mater. 13, 582–583 (1977)).

Petrov, V.

V. Petrov, M. C. Pujol, X. Mateos, Ó. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1(2), 179–212 (2007).
[CrossRef]

J. Liu, V. Petrov, X. Mateos, H. Zhang, and J. Wang, “Efficient high-power laser operation of Yb:KLu(WO4)2 crystals cut along the principal optical axes,” Opt. Lett. 32(14), 2016–2018 (2007).
[CrossRef] [PubMed]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Petzar, P. J.

Pierre, S. A.

S. A. Pierre and D. M. Albala, “The future of lasers in urology,” World J. Urol. 25(3), 275–283 (2007).
[CrossRef] [PubMed]

Pomeranz, L. A.

Porcher, P.

M. C. Pujol, C. Cascales, M. Rico, J. Massons, F. Diaz, P. Porcher, and C. Zaldo, “Measurement and crystal field analysis of energy levels of Ho3+ and Er3+ in KGd(WO4)2 single crystal,” J. Alloy. Comp. 323–324(1-2), 321–325 (2001).
[CrossRef]

Pujol, M. C.

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, J. Massons, M. Aguilo, and F. Diaz, “Near-infrared photoluminescence from Ho3+-doped monoclinic KLu(WO4)2 crystal codoped with Tm3+,” J. Lumin. 129(12), 1882–1885 (2009).
[CrossRef]

V. Petrov, M. C. Pujol, X. Mateos, Ó. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1(2), 179–212 (2007).
[CrossRef]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

M. C. Pujol, J. Massons, M. Aguilo, F. Diaz, M. Rico, and C. Zaldo, “Emission cross sections and spectroscopy of Ho3+ laser channels in KGd(WO4)2 single crystal,” IEEE J. Quantum Electron. 38(1), 93–100 (2002).
[CrossRef]

M. C. Pujol, C. Cascales, M. Rico, J. Massons, F. Diaz, P. Porcher, and C. Zaldo, “Measurement and crystal field analysis of energy levels of Ho3+ and Er3+ in KGd(WO4)2 single crystal,” J. Alloy. Comp. 323–324(1-2), 321–325 (2001).
[CrossRef]

Rico, M.

M. C. Pujol, J. Massons, M. Aguilo, F. Diaz, M. Rico, and C. Zaldo, “Emission cross sections and spectroscopy of Ho3+ laser channels in KGd(WO4)2 single crystal,” IEEE J. Quantum Electron. 38(1), 93–100 (2002).
[CrossRef]

M. C. Pujol, C. Cascales, M. Rico, J. Massons, F. Diaz, P. Porcher, and C. Zaldo, “Measurement and crystal field analysis of energy levels of Ho3+ and Er3+ in KGd(WO4)2 single crystal,” J. Alloy. Comp. 323–324(1-2), 321–325 (2001).
[CrossRef]

Rivier, S.

V. Petrov, M. C. Pujol, X. Mateos, Ó. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1(2), 179–212 (2007).
[CrossRef]

Ryabchenkov, V. V.

A. A. Kaminskii, A. G. Petrosyan, V. A. Fedorov, S. E. Sarkisov, V. V. Ryabchenkov, A. A. Pavlyuk, V. V. Lyubchenko, and I. V. Mochalov, “Two-micron stimulated emission by crystals with Ho3+ ions, based on the transition 5I7→5I8,” Sov. Phys. Dokl. 26, 846–848 (1981) (Transl. from Dokl. Akad. Nauk SSSR 260, 64–67 (1981)).

Sani, E.

E. Sani, A. Toncelli, M. Tonelli, N. Coluccelli, G. Galzerano, and P. Laporta, “Comparative analysis of Tm-Ho:KYF4 laser crystals,” Appl. Phys. B 81(6), 847–851 (2005).
[CrossRef]

Sarkisov, S. E.

A. A. Kaminskii, A. G. Petrosyan, V. A. Fedorov, S. E. Sarkisov, V. V. Ryabchenkov, A. A. Pavlyuk, V. V. Lyubchenko, and I. V. Mochalov, “Two-micron stimulated emission by crystals with Ho3+ ions, based on the transition 5I7→5I8,” Sov. Phys. Dokl. 26, 846–848 (1981) (Transl. from Dokl. Akad. Nauk SSSR 260, 64–67 (1981)).

A. A. Kaminskii, A. A. Pavlyuk, P. V. Klevtsov, I. F. Balashov, V. A. Berenberg, S. E. Sarkisov, V. A. Fedorov, M. V. Petrov, and V. V. Lyubchenko, “Stimulated radiation of monoclinic crystals of KY(WO4)2 and KGd(WO4)2 with Ln3+ ions,” Inorg. Mater. 13, 482–483 (1977) (transl. from Izv. Akad. Nauk. SSSR, Neorg. Mater. 13, 582–583 (1977)).

Shen, D. Y.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B 79(5), 559–561 (2004).
[CrossRef]

Shepherd, D. P.

Sibbett, W.

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 µm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

Silvestre, Ó.

V. Petrov, M. C. Pujol, X. Mateos, Ó. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1(2), 179–212 (2007).
[CrossRef]

Singh, U. N.

So, S.

Solé, R. M.

V. Petrov, M. C. Pujol, X. Mateos, Ó. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1(2), 179–212 (2007).
[CrossRef]

Sudesh, V.

Terry, J. A. C.

Toncelli, A.

E. Sani, A. Toncelli, M. Tonelli, N. Coluccelli, G. Galzerano, and P. Laporta, “Comparative analysis of Tm-Ho:KYF4 laser crystals,” Appl. Phys. B 81(6), 847–851 (2005).
[CrossRef]

Tonelli, M.

E. Sani, A. Toncelli, M. Tonelli, N. Coluccelli, G. Galzerano, and P. Laporta, “Comparative analysis of Tm-Ho:KYF4 laser crystals,” Appl. Phys. B 81(6), 847–851 (2005).
[CrossRef]

Viera, G.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Walsh, B. M.

B. M. Walsh, “Review of Tm and Ho materials: spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[CrossRef]

Wang, J.

Yasukevich, A. S.

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 µm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

Yu, J.

Zaldo, C.

M. C. Pujol, J. Massons, M. Aguilo, F. Diaz, M. Rico, and C. Zaldo, “Emission cross sections and spectroscopy of Ho3+ laser channels in KGd(WO4)2 single crystal,” IEEE J. Quantum Electron. 38(1), 93–100 (2002).
[CrossRef]

M. C. Pujol, C. Cascales, M. Rico, J. Massons, F. Diaz, P. Porcher, and C. Zaldo, “Measurement and crystal field analysis of energy levels of Ho3+ and Er3+ in KGd(WO4)2 single crystal,” J. Alloy. Comp. 323–324(1-2), 321–325 (2001).
[CrossRef]

Zhang, H.

Appl. Opt. (1)

Appl. Phys. B (4)

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 µm for a Tm, Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[CrossRef]

E. Sani, A. Toncelli, M. Tonelli, N. Coluccelli, G. Galzerano, and P. Laporta, “Comparative analysis of Tm-Ho:KYF4 laser crystals,” Appl. Phys. B 81(6), 847–851 (2005).
[CrossRef]

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[CrossRef]

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B 79(5), 559–561 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2 µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

M. C. Pujol, J. Massons, M. Aguilo, F. Diaz, M. Rico, and C. Zaldo, “Emission cross sections and spectroscopy of Ho3+ laser channels in KGd(WO4)2 single crystal,” IEEE J. Quantum Electron. 38(1), 93–100 (2002).
[CrossRef]

Inorg. Mater. (1)

A. A. Kaminskii, A. A. Pavlyuk, P. V. Klevtsov, I. F. Balashov, V. A. Berenberg, S. E. Sarkisov, V. A. Fedorov, M. V. Petrov, and V. V. Lyubchenko, “Stimulated radiation of monoclinic crystals of KY(WO4)2 and KGd(WO4)2 with Ln3+ ions,” Inorg. Mater. 13, 482–483 (1977) (transl. from Izv. Akad. Nauk. SSSR, Neorg. Mater. 13, 582–583 (1977)).

J. Alloy. Comp. (1)

M. C. Pujol, C. Cascales, M. Rico, J. Massons, F. Diaz, P. Porcher, and C. Zaldo, “Measurement and crystal field analysis of energy levels of Ho3+ and Er3+ in KGd(WO4)2 single crystal,” J. Alloy. Comp. 323–324(1-2), 321–325 (2001).
[CrossRef]

J. Lumin. (1)

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, J. Massons, M. Aguilo, and F. Diaz, “Near-infrared photoluminescence from Ho3+-doped monoclinic KLu(WO4)2 crystal codoped with Tm3+,” J. Lumin. 129(12), 1882–1885 (2009).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser & Photon. Rev. (1)

V. Petrov, M. C. Pujol, X. Mateos, Ó. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser & Photon. Rev. 1(2), 179–212 (2007).
[CrossRef]

Laser Phys. (1)

B. M. Walsh, “Review of Tm and Ho materials: spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Sov. Phys. Dokl. (1)

A. A. Kaminskii, A. G. Petrosyan, V. A. Fedorov, S. E. Sarkisov, V. V. Ryabchenkov, A. A. Pavlyuk, V. V. Lyubchenko, and I. V. Mochalov, “Two-micron stimulated emission by crystals with Ho3+ ions, based on the transition 5I7→5I8,” Sov. Phys. Dokl. 26, 846–848 (1981) (Transl. from Dokl. Akad. Nauk SSSR 260, 64–67 (1981)).

World J. Urol. (1)

S. A. Pierre and D. M. Albala, “The future of lasers in urology,” World J. Urol. 25(3), 275–283 (2007).
[CrossRef] [PubMed]

Other (1)

K. Scholle and P. Fuhrberg, “In-band pumping of high-power Ho:YAG lasers by laser diodes at 1.9 µm,” in Conference on Lasers and Electro-Optics CLEO’08, Technical Digest (CD) (Optical Society of America, 2008), paper CTuAA1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Absorption cross-section of the 5I85I7 transition of Ho in KLuW for E//N m and E//N p.

Fig. 2
Fig. 2

Laser setup: λ/2 and P (half-wave plate and polarizer acting as attenuator), L (AR-coated lens assembly for collimation and focusing of the fiber output with f=30 mm), L1 (AR-coated collimating lens with f=150 mm), I (isolator: quarter-wave plate), L2 (AR-coated focusing lens), M3, M4 (plane bending mirrors), M1, M5 (plane pump mirrors), M2 (Tm-laser output coupler with RC=75 mm), and M6 (Ho-laser output coupler).

Fig. 3
Fig. 3

Output power vs. incident pump power of the Ho:KLuW laser: comparison of the two pump lenses with focal lengths of f=50 mm and f=150 mm with an RC=25 mm output coupler (T OC=1.8% @ 2078 nm).

Fig. 4
Fig. 4

Dependence of the output power of the Ho:KLuW laser on the radius of curvature (RC) of its output mirror. The pump lens is f=150 mm.

Fig. 5
Fig. 5

Comparison of the Ho:KLuW laser performance for T OC=1.8% and T OC=3.3%. Inset: laser spectrum centered at 2078 nm.

Fig. 6
Fig. 6

Estimated slope efficiencies against absorbed power in the double pump pass Ho:KLuW laser using an output coupler with RC=25 mm and T OC=1.8%.

Metrics