Abstract

Based on a comprehensive theoretical optical orthogonal frequency division multiplexing (OOFDM) system model rigorously verified by comparing numerical results with end-to-end real-time experimental measurements at 11.25Gb/s, detailed explorations are undertaken, for the first time, of the impacts of various physical factors on the OOFDM system performance over directly modulated DFB laser (DML)-based, intensity modulation and direct detection (IMDD), single-mode fibre (SMF) systems without in-line optical amplification and chromatic dispersion compensation. It is shown that the low extinction ratio (ER) of the DML modulated OOFDM signal is the predominant factor limiting the maximum achievable optical power budget, and the subcarrier intermixing effect associated with square-law photon detection in the receiver reduces the optical power budget by at least 1dB. Results also indicate that, immediately after the DML in the transmitter, the insertion of a 0.02nm bandwidth optical Gaussian bandpass filter with a 0.01nm wavelength offset with respect to the optical carrier wavelength can enhance the OOFDM signal ER by approximately 1.24dB, thus resulting in a 7dB optical power budget improvement at a total channel BER of 1 × 10−3.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-P. Elbers, “Optical access solutions beyond 10G-EPON/XG-PON,” presented at OFC/NFOEC, (San Diego, CA, USA, 2010), Paper OTuO1.
  2. D. Nesset, and P. Wright, “Raman extended GPON using 1240 nm semiconductor quantum-dot lasers,” presented at OFC/NFOEC, (San Diego, CA, USA, 2010), Paper OThW6.
  3. N. Cvijetic, D. Qian, J. Hu, and T. Wang, “44-Gb/s/λ upstream OFDMA-PON transmission with polarization-insensitive source-free ONUs,” presented at OFC/NFOEC, (San Diego, CA, USA, 2010), Paper OTuO2.
  4. T.-N. Duong, N. Genay, M. Ouzzif, J. L. Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive Loading Algorithm Implemented in AMOOFDM for NG-PON System Integrating Cost-Effective and Low-Bandwidth Optical Devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
    [CrossRef]
  5. R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
    [CrossRef] [PubMed]
  6. J. M. Tang, P. M. Lane, and K. A. Shore, “High speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs,” J. Lightwave Technol. 24(1), 429–441 (2006).
    [CrossRef]
  7. J. M. Tang and K. A. Shore, “30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fibre links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
    [CrossRef]
  8. J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol. 27(16), 3678–3689 (2009).
    [CrossRef]
  9. J. L. Wei, X. Q. Jin, and J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier suppressed single sideband optical OFDM signals over IMDD SMF systems,” J. Lightwave Technol. 27(13), 2412–2419 (2009).
    [CrossRef]
  10. J. Yu, Z. Jia, M.-F. Huang, M. Haris, P. N. Ji, T. Wang, and G.-K. Chang, “Applications of 40-Gb/s chirp-managed laser in access and metro networks,” J. Lightwave Technol. 27(3), 253–265 (2009).
    [CrossRef]
  11. X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, “Negative Power Penalties of Optical OFDM Signal Transmissions in Directly Modulated DFB Laser-Based IMDD Systems Incorporating Negative Dispersion Fibres,” IEEE Photonics J. 2(4), 532–542 (2010).
    [CrossRef]
  12. H. S. Chung, Y. G. Jang, and Y. C. Chung, “Directly modulated 10-Gb/s signal transmission over 320km of negative dispersion fiber for regional metro networks,” IEEE Photon. Technol. Lett. 15(9), 1306–1308 (2003).
    [CrossRef]
  13. M. C. Tatham, X. Cu, L. D. Westbrook, G. Sherlock, and D. M. Spirit, “Transmission of 10 Gbit/s directly modulated DFB signals over 200-km standard fiber using mid-span spectral inversion,” Electron. Lett. 30(16), 1335–1336 (1994).
    [CrossRef]
  14. D. H. Sim, Y. Takushima, and Y. C. Chung, “MMF transmission of directly-modulated 40-Gb/s signal using mode-field matched center-launching technique,” presented at OFC/NFOEC09, (San Diego, USA, 2009), Paper JThA37.
  15. L.-S. Yan, Y. Wang, B. Zhang, C. Yu, J. McGeehan, L. Paraschis, and A. E. Willner, “Reach extension in 10-Gb/s directly modulated transmission systems using asymmetric and narrowband optical filtering,” Opt. Express 13(13), 5106–5115 (2005).
    [CrossRef] [PubMed]
  16. A. P. Foord, P. A. Davies, and P. A. Greenhalgh, “Optical demultiplexing for subcarrier multiplexed systems,” IEEE Trans. Microw. Theory Tech. 43(9), 2324–2329 (1995).
    [CrossRef]
  17. D. J. F. Barros and J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and on-off keying in amplified direct-detection single-mode fiber systems,” J. Lightwave Technol. 28(12), 1811–1820 (2010).
    [CrossRef]
  18. A. Ng’oma, D. Fortusini, D. Parekh, W. Yang, M. Sauer, S. Benjamin, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Performance of a multi-Gb/s 60 GHz radio over fiber system employing a directly modulated optically injection locked VCSEL,” J. Lightwave Technol. 28(16), 2436–2444 (2010).
    [CrossRef]
  19. X. Q. Jin, R. P. Giddings, E. Hugues-Salas and J. M. Tang, “Real-time experimental demonstration of optical OFDM symbol synchronization in directly modulated DFB laser-based 25km SMF IMDD systems,” ECOC’2010, (accepted for presentation).
  20. Z. Zan, M. Premaratne, and A. J. Lowery, “Laser RIN and linewidth requirements for direct detection optical OFDM,” presented in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2008 Technical Digest., Washington, DC, 2008, Paper CWN2.
  21. G. P. Agrawal, Fibre-Optic Communication Systems, 2nd ed., (Hoboken, NJ: Wiley, 1997).

2010 (4)

2009 (4)

2006 (2)

2005 (1)

2003 (1)

H. S. Chung, Y. G. Jang, and Y. C. Chung, “Directly modulated 10-Gb/s signal transmission over 320km of negative dispersion fiber for regional metro networks,” IEEE Photon. Technol. Lett. 15(9), 1306–1308 (2003).
[CrossRef]

1995 (1)

A. P. Foord, P. A. Davies, and P. A. Greenhalgh, “Optical demultiplexing for subcarrier multiplexed systems,” IEEE Trans. Microw. Theory Tech. 43(9), 2324–2329 (1995).
[CrossRef]

1994 (1)

M. C. Tatham, X. Cu, L. D. Westbrook, G. Sherlock, and D. M. Spirit, “Transmission of 10 Gbit/s directly modulated DFB signals over 200-km standard fiber using mid-span spectral inversion,” Electron. Lett. 30(16), 1335–1336 (1994).
[CrossRef]

Amann, M. C.

Barros, D. J. F.

Benjamin, S.

Chanclou, P.

T.-N. Duong, N. Genay, M. Ouzzif, J. L. Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive Loading Algorithm Implemented in AMOOFDM for NG-PON System Integrating Cost-Effective and Low-Bandwidth Optical Devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[CrossRef]

Chang, G.-K.

Chang-Hasnain, C. J.

Charbonnier, B.

T.-N. Duong, N. Genay, M. Ouzzif, J. L. Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive Loading Algorithm Implemented in AMOOFDM for NG-PON System Integrating Cost-Effective and Low-Bandwidth Optical Devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[CrossRef]

Chung, H. S.

H. S. Chung, Y. G. Jang, and Y. C. Chung, “Directly modulated 10-Gb/s signal transmission over 320km of negative dispersion fiber for regional metro networks,” IEEE Photon. Technol. Lett. 15(9), 1306–1308 (2003).
[CrossRef]

Chung, Y. C.

H. S. Chung, Y. G. Jang, and Y. C. Chung, “Directly modulated 10-Gb/s signal transmission over 320km of negative dispersion fiber for regional metro networks,” IEEE Photon. Technol. Lett. 15(9), 1306–1308 (2003).
[CrossRef]

Cu, X.

M. C. Tatham, X. Cu, L. D. Westbrook, G. Sherlock, and D. M. Spirit, “Transmission of 10 Gbit/s directly modulated DFB signals over 200-km standard fiber using mid-span spectral inversion,” Electron. Lett. 30(16), 1335–1336 (1994).
[CrossRef]

Davies, P. A.

A. P. Foord, P. A. Davies, and P. A. Greenhalgh, “Optical demultiplexing for subcarrier multiplexed systems,” IEEE Trans. Microw. Theory Tech. 43(9), 2324–2329 (1995).
[CrossRef]

Duong, T.-N.

T.-N. Duong, N. Genay, M. Ouzzif, J. L. Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive Loading Algorithm Implemented in AMOOFDM for NG-PON System Integrating Cost-Effective and Low-Bandwidth Optical Devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[CrossRef]

Foord, A. P.

A. P. Foord, P. A. Davies, and P. A. Greenhalgh, “Optical demultiplexing for subcarrier multiplexed systems,” IEEE Trans. Microw. Theory Tech. 43(9), 2324–2329 (1995).
[CrossRef]

Fortusini, D.

Genay, N.

T.-N. Duong, N. Genay, M. Ouzzif, J. L. Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive Loading Algorithm Implemented in AMOOFDM for NG-PON System Integrating Cost-Effective and Low-Bandwidth Optical Devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[CrossRef]

Giacoumidis, E.

Giddings, R. P.

Greenhalgh, P. A.

A. P. Foord, P. A. Davies, and P. A. Greenhalgh, “Optical demultiplexing for subcarrier multiplexed systems,” IEEE Trans. Microw. Theory Tech. 43(9), 2324–2329 (1995).
[CrossRef]

Hamié, A.

Haris, M.

Hofmann, W.

Hong, Y. H.

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, “Negative Power Penalties of Optical OFDM Signal Transmissions in Directly Modulated DFB Laser-Based IMDD Systems Incorporating Negative Dispersion Fibres,” IEEE Photonics J. 2(4), 532–542 (2010).
[CrossRef]

Huang, M.-F.

Hugues-Salas, E.

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, “Negative Power Penalties of Optical OFDM Signal Transmissions in Directly Modulated DFB Laser-Based IMDD Systems Incorporating Negative Dispersion Fibres,” IEEE Photonics J. 2(4), 532–542 (2010).
[CrossRef]

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[CrossRef] [PubMed]

Jang, Y. G.

H. S. Chung, Y. G. Jang, and Y. C. Chung, “Directly modulated 10-Gb/s signal transmission over 320km of negative dispersion fiber for regional metro networks,” IEEE Photon. Technol. Lett. 15(9), 1306–1308 (2003).
[CrossRef]

Ji, P. N.

Jia, Z.

Jin, X. Q.

Kahn, J. M.

Lane, P. M.

Masson, J. L.

T.-N. Duong, N. Genay, M. Ouzzif, J. L. Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive Loading Algorithm Implemented in AMOOFDM for NG-PON System Integrating Cost-Effective and Low-Bandwidth Optical Devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[CrossRef]

McGeehan, J.

Ng’oma, A.

Ouzzif, M.

T.-N. Duong, N. Genay, M. Ouzzif, J. L. Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive Loading Algorithm Implemented in AMOOFDM for NG-PON System Integrating Cost-Effective and Low-Bandwidth Optical Devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[CrossRef]

Paraschis, L.

Parekh, D.

Sauer, M.

Sherlock, G.

M. C. Tatham, X. Cu, L. D. Westbrook, G. Sherlock, and D. M. Spirit, “Transmission of 10 Gbit/s directly modulated DFB signals over 200-km standard fiber using mid-span spectral inversion,” Electron. Lett. 30(16), 1335–1336 (1994).
[CrossRef]

Shore, K. A.

Simon, J. C.

T.-N. Duong, N. Genay, M. Ouzzif, J. L. Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive Loading Algorithm Implemented in AMOOFDM for NG-PON System Integrating Cost-Effective and Low-Bandwidth Optical Devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[CrossRef]

Spirit, D. M.

M. C. Tatham, X. Cu, L. D. Westbrook, G. Sherlock, and D. M. Spirit, “Transmission of 10 Gbit/s directly modulated DFB signals over 200-km standard fiber using mid-span spectral inversion,” Electron. Lett. 30(16), 1335–1336 (1994).
[CrossRef]

Tang, J. M.

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, “Negative Power Penalties of Optical OFDM Signal Transmissions in Directly Modulated DFB Laser-Based IMDD Systems Incorporating Negative Dispersion Fibres,” IEEE Photonics J. 2(4), 532–542 (2010).
[CrossRef]

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[CrossRef] [PubMed]

J. L. Wei, X. Q. Jin, and J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier suppressed single sideband optical OFDM signals over IMDD SMF systems,” J. Lightwave Technol. 27(13), 2412–2419 (2009).
[CrossRef]

J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol. 27(16), 3678–3689 (2009).
[CrossRef]

J. M. Tang, P. M. Lane, and K. A. Shore, “High speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs,” J. Lightwave Technol. 24(1), 429–441 (2006).
[CrossRef]

J. M. Tang and K. A. Shore, “30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fibre links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
[CrossRef]

Tatham, M. C.

M. C. Tatham, X. Cu, L. D. Westbrook, G. Sherlock, and D. M. Spirit, “Transmission of 10 Gbit/s directly modulated DFB signals over 200-km standard fiber using mid-span spectral inversion,” Electron. Lett. 30(16), 1335–1336 (1994).
[CrossRef]

Wang, T.

Wang, Y.

Wei, J. L.

Westbrook, L. D.

M. C. Tatham, X. Cu, L. D. Westbrook, G. Sherlock, and D. M. Spirit, “Transmission of 10 Gbit/s directly modulated DFB signals over 200-km standard fiber using mid-span spectral inversion,” Electron. Lett. 30(16), 1335–1336 (1994).
[CrossRef]

Willner, A. E.

Yan, L.-S.

Yang, W.

Yu, C.

Yu, J.

Zhang, B.

Zheng, X.

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, “Negative Power Penalties of Optical OFDM Signal Transmissions in Directly Modulated DFB Laser-Based IMDD Systems Incorporating Negative Dispersion Fibres,” IEEE Photonics J. 2(4), 532–542 (2010).
[CrossRef]

Electron. Lett. (1)

M. C. Tatham, X. Cu, L. D. Westbrook, G. Sherlock, and D. M. Spirit, “Transmission of 10 Gbit/s directly modulated DFB signals over 200-km standard fiber using mid-span spectral inversion,” Electron. Lett. 30(16), 1335–1336 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. S. Chung, Y. G. Jang, and Y. C. Chung, “Directly modulated 10-Gb/s signal transmission over 320km of negative dispersion fiber for regional metro networks,” IEEE Photon. Technol. Lett. 15(9), 1306–1308 (2003).
[CrossRef]

T.-N. Duong, N. Genay, M. Ouzzif, J. L. Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive Loading Algorithm Implemented in AMOOFDM for NG-PON System Integrating Cost-Effective and Low-Bandwidth Optical Devices,” IEEE Photon. Technol. Lett. 21(12), 790–792 (2009).
[CrossRef]

IEEE Photonics J. (1)

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, “Negative Power Penalties of Optical OFDM Signal Transmissions in Directly Modulated DFB Laser-Based IMDD Systems Incorporating Negative Dispersion Fibres,” IEEE Photonics J. 2(4), 532–542 (2010).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

A. P. Foord, P. A. Davies, and P. A. Greenhalgh, “Optical demultiplexing for subcarrier multiplexed systems,” IEEE Trans. Microw. Theory Tech. 43(9), 2324–2329 (1995).
[CrossRef]

J. Lightwave Technol. (7)

J. M. Tang, P. M. Lane, and K. A. Shore, “High speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs,” J. Lightwave Technol. 24(1), 429–441 (2006).
[CrossRef]

J. M. Tang and K. A. Shore, “30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fibre links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
[CrossRef]

J. Yu, Z. Jia, M.-F. Huang, M. Haris, P. N. Ji, T. Wang, and G.-K. Chang, “Applications of 40-Gb/s chirp-managed laser in access and metro networks,” J. Lightwave Technol. 27(3), 253–265 (2009).
[CrossRef]

J. L. Wei, X. Q. Jin, and J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier suppressed single sideband optical OFDM signals over IMDD SMF systems,” J. Lightwave Technol. 27(13), 2412–2419 (2009).
[CrossRef]

J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol. 27(16), 3678–3689 (2009).
[CrossRef]

D. J. F. Barros and J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and on-off keying in amplified direct-detection single-mode fiber systems,” J. Lightwave Technol. 28(12), 1811–1820 (2010).
[CrossRef]

A. Ng’oma, D. Fortusini, D. Parekh, W. Yang, M. Sauer, S. Benjamin, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Performance of a multi-Gb/s 60 GHz radio over fiber system employing a directly modulated optically injection locked VCSEL,” J. Lightwave Technol. 28(16), 2436–2444 (2010).
[CrossRef]

Opt. Express (2)

Other (7)

D. H. Sim, Y. Takushima, and Y. C. Chung, “MMF transmission of directly-modulated 40-Gb/s signal using mode-field matched center-launching technique,” presented at OFC/NFOEC09, (San Diego, USA, 2009), Paper JThA37.

X. Q. Jin, R. P. Giddings, E. Hugues-Salas and J. M. Tang, “Real-time experimental demonstration of optical OFDM symbol synchronization in directly modulated DFB laser-based 25km SMF IMDD systems,” ECOC’2010, (accepted for presentation).

Z. Zan, M. Premaratne, and A. J. Lowery, “Laser RIN and linewidth requirements for direct detection optical OFDM,” presented in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2008 Technical Digest., Washington, DC, 2008, Paper CWN2.

G. P. Agrawal, Fibre-Optic Communication Systems, 2nd ed., (Hoboken, NJ: Wiley, 1997).

J.-P. Elbers, “Optical access solutions beyond 10G-EPON/XG-PON,” presented at OFC/NFOEC, (San Diego, CA, USA, 2010), Paper OTuO1.

D. Nesset, and P. Wright, “Raman extended GPON using 1240 nm semiconductor quantum-dot lasers,” presented at OFC/NFOEC, (San Diego, CA, USA, 2010), Paper OThW6.

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “44-Gb/s/λ upstream OFDMA-PON transmission with polarization-insensitive source-free ONUs,” presented at OFC/NFOEC, (San Diego, CA, USA, 2010), Paper OTuO2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Diagram of the transmission system together with the OOFDM transceiver architectures.

Fig. 2
Fig. 2

Comparisons of system frequency response between numerical simulations and experimental measurements for different link configurations.

Fig. 3
Fig. 3

Comparisons of bit error distribution across all the subcarriers between numerical simulations and experimental measurements for equal and variable power loading in various system configurations.

Fig. 5
Fig. 5

Comparisons of BER versus received optical power performance for different system configurations.

Fig. 8
Fig. 8

Impairments of received optical power dependent total channel BER performance for the cases with zero-padding (Z-P) and without Z-P. Different SMF transmission distances are considered for both these cases.

Fig. 4
Fig. 4

Subcarrier constellation comparisons between numerical simulations and experimental measurements: (a)-(c) are simulated results and (d)-(f) are experimental results.

Fig. 6
Fig. 6

Impact of OOFDM signal ER on the received optical power dependent total channel BER performance for optical BTB and 25km SMF transmission. The BER performance for ideal intensity modulator (IM)-modulated OOFDM signals is also plotted for comparison.

Fig. 7
Fig. 7

Impact of the DML frequency chirp on the received optical power dependent BER performance for different transmission distances. The signal ER of 0.2dB is adopted. FC is frequency chirp.

Fig. 9
Fig. 9

(a) OOFDM signal spectrum before filtering; (b) OBPF spectral profile with a wavelength offset of 0.01nm (1.25GHz) with respect to the OOFDM carrier wavelength. The 3dB bandwidth is 2.5GHz (0.02nm); (c) filtered OOFDM signal spectrum.

Fig. 10
Fig. 10

Total channel BER as a function of received optical power for various bandwidth OBPFs with 0.01nm wavelength detunings.

Fig. 11
Fig. 11

(a) Optimum wavelength offsets for different 3-dB bandwidth OBPFs. (b) Obtained OOFDM signal ER as a function of frequency offset for different OBPFs. The SMF length is 25km.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S ' ( t ) = K A 2 ( t ) C e j φ ( t )

Metrics