Abstract

We present a novel platform to construct high-performance nanophotonic devices in low refractive index dielectric films at telecoms wavelengths. The formation of horizontal slots by PECVD deposition of high index amorphous silicon provides a convenient and low-cost way to tailor nanophotonic devices to application needs. Low propagation loss of less than 2 dB/cm is obtained allowing us to fabricate optical resonators with measured high optical quality factors exceeding 105. We design and experimentally demonstrate on-chip grating couplers to efficiently couple light into integrated circuitry with coupling loss of 4 dB and optical bandwidth exceeding 110 nm. The entire on-chip circuitry consisting of input/output couplers, Mach-Zehnder interferometers with high extinction ratio and ring, racetrack resonators are designed, fabricated and characterized.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, “Optical modulation and detection in slotted Silicon waveguides,” Opt. Express 13(14), 5216–5226 (2005).
    [CrossRef] [PubMed]
  2. C. A. Barrios and M. Lipson, “Electrically driven silicon resonant light emitting device based on slot-waveguide,” Opt. Express 13(25), 10092–10101 (2005).
    [CrossRef] [PubMed]
  3. T. Fujisawa and M. Koshiba, “Guided Modes of Nonlinear Slot Waveguides,” IEEE Photon. Technol. Lett. 18(14), 1530–1532 (2006).
    [CrossRef]
  4. P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Express 14(20), 9197–9202 (2006).
    [CrossRef] [PubMed]
  5. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004).
    [CrossRef] [PubMed]
  6. N. N. Feng, J. Michel, and L. C. Kimerling, “Optical field concentration in low-index waveguides,” IEEE J. Quantum Electron. 42(9), 883–888 (2006).
    [CrossRef]
  7. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86(8), 081101 (2005).
    [CrossRef]
  8. R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm,” Opt. Express 15(26), 17967–17972 (2007).
    [CrossRef] [PubMed]
  9. K. Preston and M. Lipson, “Slot waveguides with polycrystalline silicon for electrical injection,” Opt. Express 17(3), 1527–1534 (2009).
    [CrossRef] [PubMed]
  10. G. Cocorullo, F. G. Della Corte, R. de Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
    [CrossRef]
  11. R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE 6183, 618304 (2006).
    [CrossRef]
  12. D. K. Sparacin, R. Sun, A. M. Agarwal, M. A. Beals, J. Michel, L. C. Kimerling, T. J. Conway, A. T. Pomerene, D. N. Carothers, M. J. Grove, D. M. Gill, M. S. Rasras, S. S. Patel, and A. E. White, “Low-Loss Amorphous Silicon Channel Waveguides for Integrated Photonics,” in Group IV Photonics (IEEE, 2006), pp.255–257.
  13. R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, 1991).
  14. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
    [CrossRef]
  15. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
    [CrossRef] [PubMed]
  16. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071–6077 (2006).
    [CrossRef]
  17. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006).
    [CrossRef] [PubMed]
  18. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two dimensional grating coupler used as a polarization splitter,” Photon. Technol. Lett. 15(9), 1249–1251 (2003).
    [CrossRef]
  19. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
    [CrossRef]
  20. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15(17), 10553–10561 (2007).
    [CrossRef] [PubMed]
  21. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15(22), 14467–14475 (2007).
    [CrossRef] [PubMed]

2009

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

K. Preston and M. Lipson, “Slot waveguides with polycrystalline silicon for electrical injection,” Opt. Express 17(3), 1527–1534 (2009).
[CrossRef] [PubMed]

2007

2006

P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Express 14(20), 9197–9202 (2006).
[CrossRef] [PubMed]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006).
[CrossRef] [PubMed]

R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE 6183, 618304 (2006).
[CrossRef]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071–6077 (2006).
[CrossRef]

T. Fujisawa and M. Koshiba, “Guided Modes of Nonlinear Slot Waveguides,” IEEE Photon. Technol. Lett. 18(14), 1530–1532 (2006).
[CrossRef]

N. N. Feng, J. Michel, and L. C. Kimerling, “Optical field concentration in low-index waveguides,” IEEE J. Quantum Electron. 42(9), 883–888 (2006).
[CrossRef]

2005

2004

2003

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two dimensional grating coupler used as a polarization splitter,” Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[CrossRef]

2002

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

1998

G. Cocorullo, F. G. Della Corte, R. de Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

Almeida, V. R.

Anderson, P. A.

Ayre, M.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071–6077 (2006).
[CrossRef]

Baehr-Jones, T.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86(8), 081101 (2005).
[CrossRef]

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, “Optical modulation and detection in slotted Silicon waveguides,” Opt. Express 13(14), 5216–5226 (2005).
[CrossRef] [PubMed]

Baets, R.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071–6077 (2006).
[CrossRef]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006).
[CrossRef] [PubMed]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[CrossRef] [PubMed]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two dimensional grating coupler used as a polarization splitter,” Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Barrios, C. A.

Benyattou, T.

R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE 6183, 618304 (2006).
[CrossRef]

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071–6077 (2006).
[CrossRef]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[CrossRef] [PubMed]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Bogaerts, W.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071–6077 (2006).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Borel, P. I.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two dimensional grating coupler used as a polarization splitter,” Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[CrossRef]

Chong, H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two dimensional grating coupler used as a polarization splitter,” Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[CrossRef]

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, R. de Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

Dalton, L.

De La Rue, R. M.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two dimensional grating coupler used as a polarization splitter,” Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[CrossRef]

de Rosa, R.

G. Cocorullo, F. G. Della Corte, R. de Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

Della Corte, F. G.

G. Cocorullo, F. G. Della Corte, R. de Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

Dong, P.

Fedeli, J. M.

R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE 6183, 618304 (2006).
[CrossRef]

Feng, N. N.

Frandsen, L. H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two dimensional grating coupler used as a polarization splitter,” Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[CrossRef]

Fujisawa, T.

T. Fujisawa and M. Koshiba, “Guided Modes of Nonlinear Slot Waveguides,” IEEE Photon. Technol. Lett. 18(14), 1530–1532 (2006).
[CrossRef]

Han, B.

R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE 6183, 618304 (2006).
[CrossRef]

Hochberg, M.

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, “Optical modulation and detection in slotted Silicon waveguides,” Opt. Express 13(14), 5216–5226 (2005).
[CrossRef] [PubMed]

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86(8), 081101 (2005).
[CrossRef]

Hong, C. Y.

Jeannot, S.

R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE 6183, 618304 (2006).
[CrossRef]

Jen, A. K.-Y.

Khan, M. H.

Kimerling, L.

Kimerling, L. C.

N. N. Feng, J. Michel, and L. C. Kimerling, “Optical field concentration in low-index waveguides,” IEEE J. Quantum Electron. 42(9), 883–888 (2006).
[CrossRef]

Koshiba, M.

T. Fujisawa and M. Koshiba, “Guided Modes of Nonlinear Slot Waveguides,” IEEE Photon. Technol. Lett. 18(14), 1530–1532 (2006).
[CrossRef]

Krauss, T. F.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Lawson, R.

Li, M.

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

Liao, Y.

Lipson, M.

Mesel, K.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Michel, J.

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Mur, P.

R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE 6183, 618304 (2006).
[CrossRef]

Orobtchouk, R.

R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE 6183, 618304 (2006).
[CrossRef]

Panepucci, R. R.

Pernice, W. H. P.

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

Preston, K.

Qi, M.

Rendina, I.

G. Cocorullo, F. G. Della Corte, R. de Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

Roelkens, G.

Rubino, A.

G. Cocorullo, F. G. Della Corte, R. de Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

Scherer, A.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86(8), 081101 (2005).
[CrossRef]

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, “Optical modulation and detection in slotted Silicon waveguides,” Opt. Express 13(14), 5216–5226 (2005).
[CrossRef] [PubMed]

Schmidt, B. S.

Shen, H.

Sullivan, P. A.

Sun, R.

Taillaert, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071–6077 (2006).
[CrossRef]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[CrossRef] [PubMed]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two dimensional grating coupler used as a polarization splitter,” Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Tang, H. X.

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

Terzini, E.

G. Cocorullo, F. G. Della Corte, R. de Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

Van Daele, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Van Laere, F.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071–6077 (2006).
[CrossRef]

Van Thourhout, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071–6077 (2006).
[CrossRef]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006).
[CrossRef] [PubMed]

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Walker, C.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86(8), 081101 (2005).
[CrossRef]

Wang, G.

Xiao, S.

Xu, Q.

Appl. Phys. Lett.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86(8), 081101 (2005).
[CrossRef]

IEEE J. Quantum Electron.

N. N. Feng, J. Michel, and L. C. Kimerling, “Optical field concentration in low-index waveguides,” IEEE J. Quantum Electron. 42(9), 883–888 (2006).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

G. Cocorullo, F. G. Della Corte, R. de Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Fujisawa and M. Koshiba, “Guided Modes of Nonlinear Slot Waveguides,” IEEE Photon. Technol. Lett. 18(14), 1530–1532 (2006).
[CrossRef]

Jpn. J. Appl. Phys.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071–6077 (2006).
[CrossRef]

Nat. Photonics

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

Opt. Express

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, “Optical modulation and detection in slotted Silicon waveguides,” Opt. Express 13(14), 5216–5226 (2005).
[CrossRef] [PubMed]

C. A. Barrios and M. Lipson, “Electrically driven silicon resonant light emitting device based on slot-waveguide,” Opt. Express 13(25), 10092–10101 (2005).
[CrossRef] [PubMed]

P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Express 14(20), 9197–9202 (2006).
[CrossRef] [PubMed]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006).
[CrossRef] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15(17), 10553–10561 (2007).
[CrossRef] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15(22), 14467–14475 (2007).
[CrossRef] [PubMed]

R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm,” Opt. Express 15(26), 17967–17972 (2007).
[CrossRef] [PubMed]

K. Preston and M. Lipson, “Slot waveguides with polycrystalline silicon for electrical injection,” Opt. Express 17(3), 1527–1534 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Photon. Technol. Lett.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two dimensional grating coupler used as a polarization splitter,” Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[CrossRef]

Proc. SPIE

R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE 6183, 618304 (2006).
[CrossRef]

Other

D. K. Sparacin, R. Sun, A. M. Agarwal, M. A. Beals, J. Michel, L. C. Kimerling, T. J. Conway, A. T. Pomerene, D. N. Carothers, M. J. Grove, D. M. Gill, M. S. Rasras, S. S. Patel, and A. E. White, “Low-Loss Amorphous Silicon Channel Waveguides for Integrated Photonics,” in Group IV Photonics (IEEE, 2006), pp.255–257.

R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a) The vertical layer structure used to define the partially buried horizontal slot waveguides. PECVD silicon nitride (green) and amorphous silicon (blue) layers are deposited onto SOI substrates. b) Calculated mode profiles for horizontal slot waveguides with different waveguide widths ranging from 200 nm to 800 nm. Increasing the width of the top waveguide confines the mode laterally to the slot region.

Fig. 2
Fig. 2

a) Simulated and measured transmission profile of a SiNx slot grating coupler with a central coupling wavelength of 1540 nm for a period of 710 nm. The nitride slot layer is 80 nm thick. The coupler features a minimum coupling loss of ~4 dB and a 3 dB bandwidth exceeding 55 nm. b) The measured transmission profiles of a SiO2 slot grating coupler with a coupler period ranging from 675 nm to 754 nm. The oxide slot layer is 80nm thick. The coupler features a minimum coupling loss of ~5 and a 3 dB bandwidth exceeding 110 nm. Notable is the wide flat-top regime in the central coupling window.

Fig. 4
Fig. 4

a) Optical image of a fabricated photonic circuit with input/output grating couplers and an integrated Mach-Zehnder interferometer with a path difference of 100 μm. The waveguide width is 900 nm. The horizontal slot is made of 80 nm PECVD SiNx. b) The measured response of the fabricated sample shown in a). The response shows the typical interference fringes of an MZI, enveloped by the profile of the grating coupler. The free-spectral range is 7.2nm, which implies a waveguide group index of 3.35. The extinction ratio is greater 20 dB which illustrates that the arms of the MZI are well balanced.

Fig. 5
Fig. 5

a) The transmission profile of a ring resonator fabricated from a silicon nitride horizontal slot waveguide. The fabricated device is shown in the optical micrograph in the inset. b) Zoom into one of the ring resonances for the near critical coupling case. A Q of 79,000 is found from the fit with a Lorentzian dip. c) The transmission response of a near critical coupled ring resonator with a silicon dioxide slot layer, showing an extinction ratio of 20dB. The broadband flat top response is the envelope of the slot grating couplers. d) A high-Q resonance measured in a separate, weakly coupled ring resonator with gap of 500nm. The Lorentzian fit reveals a best optical Q of 125,000.

Fig. 6
Fig. 6

a) Shown is the measured transmission response of a racetrack resonator with a silicon nitride slot layer. The waveguide width is 900 nm. The transmission profile is enveloped by the coupler response, whereas the extinction ratio is enveloped by the beating pattern of the input directional coupler. b) The fitted response shows an optical Q of 47,000, slightly reduced from the Q measured in ring resonators. c) The transmission profile for a racetrack resonator fabricated with a silicon dioxide slot layer. The waveguide width is 900 nm. The beating pattern reveals a beating period of roughly 43 nm. d) The fitted response of one of the resonances, showing an optical Q of 41,000, comparable to the Q found in the nitride slot resonators.

Metrics