Abstract

An ultralow-repetition-rate, all-polarization-maintaining (PM), Er-doped, ultrashort-pulse fiber laser was demonstrated using a single-wall-carbon-nanotube polyimide film. Using a ring cavity configuration, output pulses with pulse energy of 0.7–2.6 nJ were obtained at an ultralow repetition rate of 943–154 kHz for a fiber length of 0.1–1.3 km. A novel θ (theta) cavity configuration was proposed, which enabled us to reduce the required fiber length by half. A repetition rate of 132 kHz was achieved using this configuration with 909 m of PM fiber.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Galvanauskas, “Ultrashort-pulse fiber amplifier”, in Ultrafast Lasers, M. E. Fermann, ed. (Marcel Dekker, 2003), Chap. 4.
  2. D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems,” Opt. Express 16(14), 10664–10674 (2008).
    [CrossRef] [PubMed]
  3. A. M. Kowalevicz, A. T. Zare, F. X. Kärtner, J. G. Fujimoto, S. Dewald, U. Morgner, V. Scheuer, and G. Angelow, “Generation of 150-nJ pulses from a multiple-pass cavity Kerr-lens mode-locked Ti:Al2O3 oscillator,” Opt. Lett. 28(17), 1597–1599 (2003).
    [CrossRef] [PubMed]
  4. K. H. Fong, S. Y. Kim, K. Kikuchi, H. Yamaguchi, and S. Y. Set, “Generation of low-repetition rate high-energy picoseconds pulses from a single-wall carbon nanotube mode-locked fiber laser,” in Optical Amplifiers and Their Applications / Coherent Optical Technologies and Applications, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper OMD4.
  5. M. S. Khan, and N. Uehara, “920 kHz, low-repetition rate, mode-locked Er-doped fiber ring laser at 1534 nm,” in Conference on Lasers and Electro-Optics / Pacific Rim 2007 (Optical Society of America, 2007), paper PDPA_4.
  6. S. Kobtsev, S. Kukarin, and Y. Fedotov, “Ultra-low repetition rate mode-locked fiber laser with high-energy pulses,” Opt. Express 16(26), 21936–21941 (2008).
    [CrossRef] [PubMed]
  7. E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009).
    [CrossRef]
  8. L. Chen, M. Zhang, C. Zhou, Y. Cai, L. Ren, and Z. Zhang, “Ultra-low repetition rate linear-cavity erbium-doped fiber laser modelocked with semiconductor saturable absorber mirror,” Electron. Lett. 45(14), 731–733 (2009).
    [CrossRef]
  9. C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic Raman fiber oscillator,” Opt. Express 18(8), 8680–8687 (2010).
    [CrossRef] [PubMed]
  10. B. N. Nyushkov, V. I. Denisov, S. M. Kobtsev, V. S. Pivtsov, N. A. Kolyada, A. V. Ivanenko, and S. K. Turitsyn, “Generation of 1.7 μJ pulses at 1.55 μm by a self-mode-locked all-fiber laser with a kilometers-long linear-ring cavity,” Laser Phys. Lett. 7(9), 661–665 (2010).
    [CrossRef]
  11. Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
    [CrossRef]
  12. S. Y. Set, H. Yamaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, and K. Kikuchi, “Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes”, in Optical Fiber Communication Conference 2003, Technical Digest (Optical Society of America, 2003), paper PD44.
  13. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett. 29(14), 1581–1583 (2004).
    [CrossRef] [PubMed]
  14. Y. Sakakibara, K. Kintaka, A. G. Rozhin, T. Itatani, W. M. Soe, H. Itatani, M. Tokumoto, and H. Kataura, “Optically uniform carbon nanotube-polyimide nanocomposite: application to 165 fs mode-locked fiber laser and waveguide”, Proceedings of ECOC’05, 1, 37 (2005).
  15. A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, “Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett. 88(5), 051118 (2006).
    [CrossRef]
  16. M. Nakazawa, S. Nakahara, T. Hirooka, M. Yoshida, T. Kaino, and K. Komatsu, “Polymer saturable absorber materials in the 1.5 microm band using poly-methyl-methacrylate and polystyrene with single-wall carbon nanotubes and their application to a femtosecond laser,” Opt. Lett. 31(7), 915–917 (2006).
    [CrossRef] [PubMed]
  17. Y. W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32(2), 148–150 (2007).
    [CrossRef]
  18. J. W. Nicholson, R. S. Windeler, and D. J. Digiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express 15(15), 9176–9183 (2007).
    [CrossRef] [PubMed]
  19. K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett. 32(15), 2242–2244 (2007).
    [CrossRef] [PubMed]
  20. N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express 16(13), 9429–9435 (2008).
    [CrossRef] [PubMed]
  21. Y. Senoo, N. Nishizawa, Y. Sakakibara, K. Sumimura, E. Itoga, H. Kataura, and K. Itoh, “Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film,” Opt. Express 17(22), 20233–20241 (2009).
    [CrossRef] [PubMed]
  22. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
    [CrossRef] [PubMed]
  23. S. Lee, K. Kim, and P. J. Delfyett., “Extreme chirped pulse oscillator (XCPO) using a theta cavity design,” IEEE Photon. Technol. Lett. 18(7), 799–801 (2006).
    [CrossRef]
  24. J. Chen, J. W. Sickler, E. P. Ippen, and F. X. Kärtner, “High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser,” Opt. Lett. 32(11), 1566–1568 (2007).
    [CrossRef] [PubMed]
  25. S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, “Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers,” Opt. Express 17(23), 20707–20713 (2009).
    [CrossRef] [PubMed]

2010 (2)

B. N. Nyushkov, V. I. Denisov, S. M. Kobtsev, V. S. Pivtsov, N. A. Kolyada, A. V. Ivanenko, and S. K. Turitsyn, “Generation of 1.7 μJ pulses at 1.55 μm by a self-mode-locked all-fiber laser with a kilometers-long linear-ring cavity,” Laser Phys. Lett. 7(9), 661–665 (2010).
[CrossRef]

C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic Raman fiber oscillator,” Opt. Express 18(8), 8680–8687 (2010).
[CrossRef] [PubMed]

2009 (4)

Y. Senoo, N. Nishizawa, Y. Sakakibara, K. Sumimura, E. Itoga, H. Kataura, and K. Itoh, “Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film,” Opt. Express 17(22), 20233–20241 (2009).
[CrossRef] [PubMed]

S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, “Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers,” Opt. Express 17(23), 20707–20713 (2009).
[CrossRef] [PubMed]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009).
[CrossRef]

L. Chen, M. Zhang, C. Zhou, Y. Cai, L. Ren, and Z. Zhang, “Ultra-low repetition rate linear-cavity erbium-doped fiber laser modelocked with semiconductor saturable absorber mirror,” Electron. Lett. 45(14), 731–733 (2009).
[CrossRef]

2008 (4)

2007 (4)

2006 (3)

A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, “Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett. 88(5), 051118 (2006).
[CrossRef]

S. Lee, K. Kim, and P. J. Delfyett., “Extreme chirped pulse oscillator (XCPO) using a theta cavity design,” IEEE Photon. Technol. Lett. 18(7), 799–801 (2006).
[CrossRef]

M. Nakazawa, S. Nakahara, T. Hirooka, M. Yoshida, T. Kaino, and K. Komatsu, “Polymer saturable absorber materials in the 1.5 microm band using poly-methyl-methacrylate and polystyrene with single-wall carbon nanotubes and their application to a femtosecond laser,” Opt. Lett. 31(7), 915–917 (2006).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

2002 (1)

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Achiba, Y.

A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, “Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett. 88(5), 051118 (2006).
[CrossRef]

Aguergaray, C.

Ajayan, P. M.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Angelow, G.

Biedermann, B. R.

Cai, Y.

L. Chen, M. Zhang, C. Zhou, Y. Cai, L. Ren, and Z. Zhang, “Ultra-low repetition rate linear-cavity erbium-doped fiber laser modelocked with semiconductor saturable absorber mirror,” Electron. Lett. 45(14), 731–733 (2009).
[CrossRef]

Chen, J.

Chen, L.

L. Chen, M. Zhang, C. Zhou, Y. Cai, L. Ren, and Z. Zhang, “Ultra-low repetition rate linear-cavity erbium-doped fiber laser modelocked with semiconductor saturable absorber mirror,” Electron. Lett. 45(14), 731–733 (2009).
[CrossRef]

Chen, Y.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Delfyett, P. J.

S. Lee, K. Kim, and P. J. Delfyett., “Extreme chirped pulse oscillator (XCPO) using a theta cavity design,” IEEE Photon. Technol. Lett. 18(7), 799–801 (2006).
[CrossRef]

Denisov, V. I.

B. N. Nyushkov, V. I. Denisov, S. M. Kobtsev, V. S. Pivtsov, N. A. Kolyada, A. V. Ivanenko, and S. K. Turitsyn, “Generation of 1.7 μJ pulses at 1.55 μm by a self-mode-locked all-fiber laser with a kilometers-long linear-ring cavity,” Laser Phys. Lett. 7(9), 661–665 (2010).
[CrossRef]

Dewald, S.

Digiovanni, D. J.

Eigenwillig, C. M.

Fedotov, Y.

Ferrari, A. C.

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009).
[CrossRef]

Fujimoto, J. G.

Goh, C. S.

Harvey, J. D.

Hirooka, T.

Huber, R.

Inoue, Y.

Ippen, E. P.

Itoga, E.

Itoh, K.

Ivanenko, A. V.

B. N. Nyushkov, V. I. Denisov, S. M. Kobtsev, V. S. Pivtsov, N. A. Kolyada, A. V. Ivanenko, and S. K. Turitsyn, “Generation of 1.7 μJ pulses at 1.55 μm by a self-mode-locked all-fiber laser with a kilometers-long linear-ring cavity,” Laser Phys. Lett. 7(9), 661–665 (2010).
[CrossRef]

Jablonski, M.

Kaino, T.

Kärtner, F. X.

Kataura, H.

Kelleher, E. J. R.

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009).
[CrossRef]

Kieu, K.

Kim, K.

S. Lee, K. Kim, and P. J. Delfyett., “Extreme chirped pulse oscillator (XCPO) using a theta cavity design,” IEEE Photon. Technol. Lett. 18(7), 799–801 (2006).
[CrossRef]

Kobtsev, S.

Kobtsev, S. M.

B. N. Nyushkov, V. I. Denisov, S. M. Kobtsev, V. S. Pivtsov, N. A. Kolyada, A. V. Ivanenko, and S. K. Turitsyn, “Generation of 1.7 μJ pulses at 1.55 μm by a self-mode-locked all-fiber laser with a kilometers-long linear-ring cavity,” Laser Phys. Lett. 7(9), 661–665 (2010).
[CrossRef]

Kolyada, N. A.

B. N. Nyushkov, V. I. Denisov, S. M. Kobtsev, V. S. Pivtsov, N. A. Kolyada, A. V. Ivanenko, and S. K. Turitsyn, “Generation of 1.7 μJ pulses at 1.55 μm by a self-mode-locked all-fiber laser with a kilometers-long linear-ring cavity,” Laser Phys. Lett. 7(9), 661–665 (2010).
[CrossRef]

Komatsu, K.

Kowalevicz, A. M.

Kruglov, V.

Kukarin, S.

Latkin, A.

Lee, S.

S. Lee, K. Kim, and P. J. Delfyett., “Extreme chirped pulse oscillator (XCPO) using a theta cavity design,” IEEE Photon. Technol. Lett. 18(7), 799–801 (2006).
[CrossRef]

Limpert, J.

Lu, T.-M.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Mansuripur, M.

Maruyama, S.

Méchin, D.

Morgner, U.

Murakami, Y.

Nakahara, S.

Nakazawa, M.

Namiki, S.

A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, “Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett. 88(5), 051118 (2006).
[CrossRef]

Nicholson, J. W.

Nishizawa, N.

Nyushkov, B. N.

B. N. Nyushkov, V. I. Denisov, S. M. Kobtsev, V. S. Pivtsov, N. A. Kolyada, A. V. Ivanenko, and S. K. Turitsyn, “Generation of 1.7 μJ pulses at 1.55 μm by a self-mode-locked all-fiber laser with a kilometers-long linear-ring cavity,” Laser Phys. Lett. 7(9), 661–665 (2010).
[CrossRef]

Palte, G.

Pivtsov, V. S.

B. N. Nyushkov, V. I. Denisov, S. M. Kobtsev, V. S. Pivtsov, N. A. Kolyada, A. V. Ivanenko, and S. K. Turitsyn, “Generation of 1.7 μJ pulses at 1.55 μm by a self-mode-locked all-fiber laser with a kilometers-long linear-ring cavity,” Laser Phys. Lett. 7(9), 661–665 (2010).
[CrossRef]

Popov, S. V.

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009).
[CrossRef]

Raravikar, N. R.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Ren, L.

L. Chen, M. Zhang, C. Zhou, Y. Cai, L. Ren, and Z. Zhang, “Ultra-low repetition rate linear-cavity erbium-doped fiber laser modelocked with semiconductor saturable absorber mirror,” Electron. Lett. 45(14), 731–733 (2009).
[CrossRef]

Rozhin, A. G.

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009).
[CrossRef]

A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, “Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett. 88(5), 051118 (2006).
[CrossRef]

Sakakibara, Y.

Schadler, L. S.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Scheuer, V.

Schimpf, D. N.

Seise, E.

Seno, Y.

Senoo, Y.

Set, S. Y.

Sickler, J. W.

Smirnov, S.

Song, Y. W.

Sumimura, K.

Sun, Z.

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009).
[CrossRef]

Taylor, J. R.

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009).
[CrossRef]

Tokumoto, M.

A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, “Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett. 88(5), 051118 (2006).
[CrossRef]

Travers, J. C.

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009).
[CrossRef]

Tünnermann, A.

Turitsyn, S.

Turitsyn, S. K.

B. N. Nyushkov, V. I. Denisov, S. M. Kobtsev, V. S. Pivtsov, N. A. Kolyada, A. V. Ivanenko, and S. K. Turitsyn, “Generation of 1.7 μJ pulses at 1.55 μm by a self-mode-locked all-fiber laser with a kilometers-long linear-ring cavity,” Laser Phys. Lett. 7(9), 661–665 (2010).
[CrossRef]

Wang, G.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Windeler, R. S.

Yaguchi, H.

Yamashita, S.

Yoshida, M.

Zare, A. T.

Zhang, M.

L. Chen, M. Zhang, C. Zhou, Y. Cai, L. Ren, and Z. Zhang, “Ultra-low repetition rate linear-cavity erbium-doped fiber laser modelocked with semiconductor saturable absorber mirror,” Electron. Lett. 45(14), 731–733 (2009).
[CrossRef]

Zhang, X.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Zhang, Z.

L. Chen, M. Zhang, C. Zhou, Y. Cai, L. Ren, and Z. Zhang, “Ultra-low repetition rate linear-cavity erbium-doped fiber laser modelocked with semiconductor saturable absorber mirror,” Electron. Lett. 45(14), 731–733 (2009).
[CrossRef]

Zhao, Y.-P.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Zhou, C.

L. Chen, M. Zhang, C. Zhou, Y. Cai, L. Ren, and Z. Zhang, “Ultra-low repetition rate linear-cavity erbium-doped fiber laser modelocked with semiconductor saturable absorber mirror,” Electron. Lett. 45(14), 731–733 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, “Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett. 88(5), 051118 (2006).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009).
[CrossRef]

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Electron. Lett. (1)

L. Chen, M. Zhang, C. Zhou, Y. Cai, L. Ren, and Z. Zhang, “Ultra-low repetition rate linear-cavity erbium-doped fiber laser modelocked with semiconductor saturable absorber mirror,” Electron. Lett. 45(14), 731–733 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Lee, K. Kim, and P. J. Delfyett., “Extreme chirped pulse oscillator (XCPO) using a theta cavity design,” IEEE Photon. Technol. Lett. 18(7), 799–801 (2006).
[CrossRef]

Laser Phys. Lett. (1)

B. N. Nyushkov, V. I. Denisov, S. M. Kobtsev, V. S. Pivtsov, N. A. Kolyada, A. V. Ivanenko, and S. K. Turitsyn, “Generation of 1.7 μJ pulses at 1.55 μm by a self-mode-locked all-fiber laser with a kilometers-long linear-ring cavity,” Laser Phys. Lett. 7(9), 661–665 (2010).
[CrossRef]

Opt. Express (8)

J. W. Nicholson, R. S. Windeler, and D. J. Digiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express 15(15), 9176–9183 (2007).
[CrossRef] [PubMed]

C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
[CrossRef] [PubMed]

N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express 16(13), 9429–9435 (2008).
[CrossRef] [PubMed]

D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems,” Opt. Express 16(14), 10664–10674 (2008).
[CrossRef] [PubMed]

S. Kobtsev, S. Kukarin, and Y. Fedotov, “Ultra-low repetition rate mode-locked fiber laser with high-energy pulses,” Opt. Express 16(26), 21936–21941 (2008).
[CrossRef] [PubMed]

Y. Senoo, N. Nishizawa, Y. Sakakibara, K. Sumimura, E. Itoga, H. Kataura, and K. Itoh, “Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film,” Opt. Express 17(22), 20233–20241 (2009).
[CrossRef] [PubMed]

S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, “Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers,” Opt. Express 17(23), 20707–20713 (2009).
[CrossRef] [PubMed]

C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic Raman fiber oscillator,” Opt. Express 18(8), 8680–8687 (2010).
[CrossRef] [PubMed]

Opt. Lett. (6)

A. M. Kowalevicz, A. T. Zare, F. X. Kärtner, J. G. Fujimoto, S. Dewald, U. Morgner, V. Scheuer, and G. Angelow, “Generation of 150-nJ pulses from a multiple-pass cavity Kerr-lens mode-locked Ti:Al2O3 oscillator,” Opt. Lett. 28(17), 1597–1599 (2003).
[CrossRef] [PubMed]

S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett. 29(14), 1581–1583 (2004).
[CrossRef] [PubMed]

M. Nakazawa, S. Nakahara, T. Hirooka, M. Yoshida, T. Kaino, and K. Komatsu, “Polymer saturable absorber materials in the 1.5 microm band using poly-methyl-methacrylate and polystyrene with single-wall carbon nanotubes and their application to a femtosecond laser,” Opt. Lett. 31(7), 915–917 (2006).
[CrossRef] [PubMed]

Y. W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32(2), 148–150 (2007).
[CrossRef]

J. Chen, J. W. Sickler, E. P. Ippen, and F. X. Kärtner, “High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser,” Opt. Lett. 32(11), 1566–1568 (2007).
[CrossRef] [PubMed]

K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett. 32(15), 2242–2244 (2007).
[CrossRef] [PubMed]

Other (5)

S. Y. Set, H. Yamaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, and K. Kikuchi, “Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes”, in Optical Fiber Communication Conference 2003, Technical Digest (Optical Society of America, 2003), paper PD44.

Y. Sakakibara, K. Kintaka, A. G. Rozhin, T. Itatani, W. M. Soe, H. Itatani, M. Tokumoto, and H. Kataura, “Optically uniform carbon nanotube-polyimide nanocomposite: application to 165 fs mode-locked fiber laser and waveguide”, Proceedings of ECOC’05, 1, 37 (2005).

A. Galvanauskas, “Ultrashort-pulse fiber amplifier”, in Ultrafast Lasers, M. E. Fermann, ed. (Marcel Dekker, 2003), Chap. 4.

K. H. Fong, S. Y. Kim, K. Kikuchi, H. Yamaguchi, and S. Y. Set, “Generation of low-repetition rate high-energy picoseconds pulses from a single-wall carbon nanotube mode-locked fiber laser,” in Optical Amplifiers and Their Applications / Coherent Optical Technologies and Applications, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper OMD4.

M. S. Khan, and N. Uehara, “920 kHz, low-repetition rate, mode-locked Er-doped fiber ring laser at 1534 nm,” in Conference on Lasers and Electro-Optics / Pacific Rim 2007 (Optical Society of America, 2007), paper PDPA_4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Setup of long-cavity, all-polarization-maintaining (PM), Er-doped fiber ring laser with SWNT polyimide film. WDM: wavelength division multiplexed coupler; SMF: single-mode fiber; EDF: Er-doped fiber.

Fig. 2
Fig. 2

Characteristics of the output pulse when the output coupling ratio was 97.1%. (a) Pulse energy and pulse duration of output pulse as a function of repetition rate. (b) Optical spectrum of laser output pulse. Several repetition rates were examined.

Fig. 3
Fig. 3

Characteristics of the output pulse when the cavity length was 1309.5 m and the output coupling ratio was 98.8%. (a) Temporal waveform of pulse train. (b) Optical spectrum of laser output pulse. (c) Temporal shape and instantaneous wavelength of output pulse.

Fig. 4
Fig. 4

RF noise spectra of output pulse from fiber laser when the output coupling ratio was 98.8%.

Fig. 5
Fig. 5

Configuration of all-PM, θ-cavity fiber laser for ultralow repetition rate. PBC, polarization beam combiner.

Fig. 6
Fig. 6

Optical spectra of output pulses for (a) λ 0 = 1546.2 nm and (b) λ 0 = 1532.5 nm.

Fig. 7
Fig. 7

Pulse train for 132 kHz-repetition-rate, θ-cavity laser.

Metrics