Abstract

We report and investigate the feasibility of zero-overhead laser phase noise compensation (PNC) for long-haul coherent optical orthogonal frequency division multiplexing (CO-OFDM) transmission systems, using the decision-directed phase equalizer (DDPE). DDPE updates the equalization parameters on a symbol-by-symbol basis after an initial decision making stage and retrieves an estimation of the phase noise value by extracting and averaging the phase drift of all OFDM sub-channels. Subsequently, a second equalization is performed by using the estimated phase noise value which is followed by a final decision making stage. We numerically compare the performance of DDPE and the CO-OFDM conventional equalizer (CE) for different laser linewidth values after transmission over 2000 km of uncompensated single-mode fiber (SMF) at 40 Gb/s and investigate the effect of fiber nonlinearity and amplified spontaneous emission (ASE) noise on the received signal quality. Furthermore, we analytically analyze the complexity of DDPE versus CE in terms of the number of required complex multiplications per bit.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [CrossRef] [PubMed]
  2. W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come?” J. Opt. Netw. 7(3), 234–255 (2008).
    [CrossRef]
  3. M. E. Mousa-Pasandi and D. V. Plant, “Data-aided adaptive weighted channel equalizer for long-haul optical OFDM transmission systems,” Opt. Express 18(4), 3919–3927 (2010).
    [CrossRef] [PubMed]
  4. S. L. Jansen, I. Morita, T. Schenk, N. Takeda, and H. Tankada, “Coherent Optical 25.8-Gb/s OFDM Transmission Over 4160-km SSMF,” J. Lightwave Technol. 26(1), 6–15 (2008).
    [CrossRef]
  5. F. Buchali, R. Dischler, and X. Liu, “Optical OFDM: A Promising High-Speed Optical Transport Technology,” Bell Labs Tech. J. 14(1), 125–148 (2009).
    [CrossRef]
  6. X. Yi, W. Shieh, and Y. Tang, “Phase Estimation for Coherent Optical OFDM,” IEEE Photon. Technol. Lett. 19(12), 919–921 (2007).
    [CrossRef]
  7. S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, “20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-Pilot tone phase noise compensation,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP15.
  8. M. E. Mousa-Pasandi, and D. V. Plant, “Improvement of Phase Noise Compensation for Coherent Optical OFDM via Data-Aided Phase Equalizer,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper JThA10.
  9. J. Ran, R. Grunheid, H. Rohling, E. Bolinth, and R. Kern, “Decision-directed channel estimation method for OFDM systems with high velocities,” in Proceedings of IEEE Vehicular Technology Conference, (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 2358–2361.
  10. M. Rim, “Optimally combining decision-directed and pilot-symbol-aided channel estimation,” IEE Electron. Lett. 39(6), 558–560 (2003).
    [CrossRef]
  11. R. W. Tkach and A. R. Chraplyvy, “Phase Noise and Linewidth in an InGaAsP DFB Laser,” J. Lightwave Technol. 4(11), 1711–1716 (1986).
    [CrossRef]
  12. E. Ip and J. M. Kahn, “Compensation of Dispersion and Nonlinear Impairments Using Digital Backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [CrossRef]
  13. S. L. Jansen, B. Spinnlera, I. Moritab, S. Randelc, and H. Tanakab, “100GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5), 407–413 (2009).
    [CrossRef]

2010 (1)

2009 (2)

F. Buchali, R. Dischler, and X. Liu, “Optical OFDM: A Promising High-Speed Optical Transport Technology,” Bell Labs Tech. J. 14(1), 125–148 (2009).
[CrossRef]

S. L. Jansen, B. Spinnlera, I. Moritab, S. Randelc, and H. Tanakab, “100GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5), 407–413 (2009).
[CrossRef]

2008 (4)

2007 (1)

X. Yi, W. Shieh, and Y. Tang, “Phase Estimation for Coherent Optical OFDM,” IEEE Photon. Technol. Lett. 19(12), 919–921 (2007).
[CrossRef]

2003 (1)

M. Rim, “Optimally combining decision-directed and pilot-symbol-aided channel estimation,” IEE Electron. Lett. 39(6), 558–560 (2003).
[CrossRef]

1986 (1)

R. W. Tkach and A. R. Chraplyvy, “Phase Noise and Linewidth in an InGaAsP DFB Laser,” J. Lightwave Technol. 4(11), 1711–1716 (1986).
[CrossRef]

Bao, H.

Buchali, F.

F. Buchali, R. Dischler, and X. Liu, “Optical OFDM: A Promising High-Speed Optical Transport Technology,” Bell Labs Tech. J. 14(1), 125–148 (2009).
[CrossRef]

Chraplyvy, A. R.

R. W. Tkach and A. R. Chraplyvy, “Phase Noise and Linewidth in an InGaAsP DFB Laser,” J. Lightwave Technol. 4(11), 1711–1716 (1986).
[CrossRef]

Dischler, R.

F. Buchali, R. Dischler, and X. Liu, “Optical OFDM: A Promising High-Speed Optical Transport Technology,” Bell Labs Tech. J. 14(1), 125–148 (2009).
[CrossRef]

Ip, E.

Jansen, S. L.

S. L. Jansen, B. Spinnlera, I. Moritab, S. Randelc, and H. Tanakab, “100GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5), 407–413 (2009).
[CrossRef]

S. L. Jansen, I. Morita, T. Schenk, N. Takeda, and H. Tankada, “Coherent Optical 25.8-Gb/s OFDM Transmission Over 4160-km SSMF,” J. Lightwave Technol. 26(1), 6–15 (2008).
[CrossRef]

Kahn, J. M.

Liu, X.

F. Buchali, R. Dischler, and X. Liu, “Optical OFDM: A Promising High-Speed Optical Transport Technology,” Bell Labs Tech. J. 14(1), 125–148 (2009).
[CrossRef]

Ma, Y.

Morita, I.

Moritab, I.

S. L. Jansen, B. Spinnlera, I. Moritab, S. Randelc, and H. Tanakab, “100GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5), 407–413 (2009).
[CrossRef]

Mousa-Pasandi, M. E.

Plant, D. V.

Randelc, S.

S. L. Jansen, B. Spinnlera, I. Moritab, S. Randelc, and H. Tanakab, “100GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5), 407–413 (2009).
[CrossRef]

Rim, M.

M. Rim, “Optimally combining decision-directed and pilot-symbol-aided channel estimation,” IEE Electron. Lett. 39(6), 558–560 (2003).
[CrossRef]

Schenk, T.

Shieh, W.

Spinnlera, B.

S. L. Jansen, B. Spinnlera, I. Moritab, S. Randelc, and H. Tanakab, “100GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5), 407–413 (2009).
[CrossRef]

Takeda, N.

Tanakab, H.

S. L. Jansen, B. Spinnlera, I. Moritab, S. Randelc, and H. Tanakab, “100GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5), 407–413 (2009).
[CrossRef]

Tang, Y.

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
[CrossRef] [PubMed]

X. Yi, W. Shieh, and Y. Tang, “Phase Estimation for Coherent Optical OFDM,” IEEE Photon. Technol. Lett. 19(12), 919–921 (2007).
[CrossRef]

Tankada, H.

Tkach, R. W.

R. W. Tkach and A. R. Chraplyvy, “Phase Noise and Linewidth in an InGaAsP DFB Laser,” J. Lightwave Technol. 4(11), 1711–1716 (1986).
[CrossRef]

Yang, Q.

Yi, X.

W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come?” J. Opt. Netw. 7(3), 234–255 (2008).
[CrossRef]

X. Yi, W. Shieh, and Y. Tang, “Phase Estimation for Coherent Optical OFDM,” IEEE Photon. Technol. Lett. 19(12), 919–921 (2007).
[CrossRef]

Bell Labs Tech. J. (1)

F. Buchali, R. Dischler, and X. Liu, “Optical OFDM: A Promising High-Speed Optical Transport Technology,” Bell Labs Tech. J. 14(1), 125–148 (2009).
[CrossRef]

IEE Electron. Lett. (1)

M. Rim, “Optimally combining decision-directed and pilot-symbol-aided channel estimation,” IEE Electron. Lett. 39(6), 558–560 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

X. Yi, W. Shieh, and Y. Tang, “Phase Estimation for Coherent Optical OFDM,” IEEE Photon. Technol. Lett. 19(12), 919–921 (2007).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Netw. (1)

Opt. Express (2)

Opt. Fiber Technol. (1)

S. L. Jansen, B. Spinnlera, I. Moritab, S. Randelc, and H. Tanakab, “100GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5), 407–413 (2009).
[CrossRef]

Other (3)

S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, “20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-Pilot tone phase noise compensation,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP15.

M. E. Mousa-Pasandi, and D. V. Plant, “Improvement of Phase Noise Compensation for Coherent Optical OFDM via Data-Aided Phase Equalizer,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper JThA10.

J. Ran, R. Grunheid, H. Rohling, E. Bolinth, and R. Kern, “Decision-directed channel estimation method for OFDM systems with high velocities,” in Proceedings of IEEE Vehicular Technology Conference, (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 2358–2361.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

DDPE diagram.

Fig. 2
Fig. 2

Graphical illustration of the equalized received constellation points after (a) the first and (b) the second equalization stage.

Fig. 3
Fig. 3

Simulation setup.

Fig. 4
Fig. 4

An example of received constellation points at 40 Gb/s after 2000 km transmission using laser linewidth of 30 kHz (a) without any PNC (b) with zero-overhead PNC based on DDPE.

Fig. 5
Fig. 5

The BER performance of DDPE, blue solid curves, and CE with 5% PSC overhead, red dashed curves, for laser linewidth of (a) 20 kHz, (b) 40 kHz, (c) 60 kHz and (d) 80 kHz.

Fig. 6
Fig. 6

The BER Performance of DDPE for different laser linewidth values.

Fig. 7
Fig. 7

The BER performance of DDPE and CE versus launch power with and without BP nonlinearity compensation scheme at two different received OSNR values of 13 dB and 15.3 dB. The linewidth of the lasers at both transmitter and receiver sides is set to 60 kHz.

Fig. 8
Fig. 8

The percentage of DDPE extra complexity to CE (in terms of the number of required complex multiplications per bit) versus the FFT size for different oversampling ratios. The PS overhead is 3%. The PSC overhead of CE is 5%.

Tables (2)

Tables Icon

Table 1 Number of required complex multiplications per symbol for CE.

Tables Icon

Table 2 Number of required complex multiplications per symbol for DDPE.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S ^ n , k = R n , k / H ˜ n 1 , k
H ^ n , k = R n , k / S ¯ n , k
Δ ϕ D D P E , n = ( i = 1 N ( arg { H ^ n , i } arg { H ˜ n 1 , i } ) ) / N
H ˜ n , k = ( 1 γ ) H ^ n , k + γ H ˜ n 1 , k e Δ ϕ D D P E , n
N C E = ( N 2 log 2 N + U × ( 1 R P S ) + U × R P S + U × R P S C × ( 1 R P S ) + U × ( 1 R P S ) ) / U log 2 M = ( N 2 U log 2 N + R P S + ( 2 + R P S C ) × ( 1 R P S ) ) / log 2 M
N D D P E = ( N 2 log 2 N + U + 2 × U × ( 1 R P S ) + U × ( 1 R P S ) ) / U log 2 M = ( N 2 U log 2 N + 1 + 3 × ( 1 R P S ) ) / log 2 M

Metrics