Abstract

We propose a new method for implementing 3D/2D convertible feature in the projection-type integral imaging by using concave half mirror array. The concave half mirror array has the partially reflective characteristic to the incident light. And the reflected term is modulated by the concave mirror array structure, while the transmitted term is unaffected. With such unique characteristic, 3D/2D conversion or even the simultaneous display of 3D and 2D images is also possible. The prototype was fabricated by the aluminum coating and the polydimethylsiloxane molding process. We could experimentally verify the 3D/2D conversion and the display of 3D image on 2D background with the fabricated prototype.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1647–1658 (2007).
    [CrossRef]
  2. B. Lee, J.-H. Park, and S.-W. Min, Digital Holography and Three-Dimensional Display, T.-C. Poon, ed. (Springer US, 2006), Chap. 12.
  3. B. Javidi, and F. Okano, eds., Three Dimensional Television, Video, and Display Technology (Springer, 2002).
  4. T.-C. Poon, “Optical scanning holography - a review of recent progress,” J. Opt. Soc. Korea 13(4), 406–415 (2009).
    [CrossRef]
  5. G. Lippmann, “La photographie integrale,” Acad. Sci., Paris, C. R. 146, 446–451 (1908).
  6. J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
    [CrossRef] [PubMed]
  7. M.-O. Jeong, N. Kim, and J.-H. Park, “Elemental image synthesis for integral imaging using phase-shifting digital holography,” J. Opt. Soc. Korea 12(4), 275–280 (2008).
    [CrossRef]
  8. M. Kawakita, H. Sasaki, J. Arai, F. Okano, K. Suehiro, Y. Haino, M. Yoshimura, and M. Sato, “Geometric analysis of spatial distortion in projection-type integral imaging,” Opt. Lett. 33(7), 684–686 (2008).
    [CrossRef] [PubMed]
  9. S.-W. Min, J. Kim, and B. Lee, “Wide-viewing projection-type integral imaging system with an embossed screen,” Opt. Lett. 29(20), 2420–2422 (2004).
    [CrossRef] [PubMed]
  10. Y. Jeong, S. Jung, J.-H. Park, and B. Lee, “Reflection-type integral imaging scheme for displaying three-dimensional images,” Opt. Lett. 27(9), 704–706 (2002).
    [CrossRef]
  11. Y. Kim, S. G. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt. 48(34), H71–H76 (2009).
    [CrossRef] [PubMed]
  12. J.-S. Jang and B. Javidi, “Three-dimensional projection integral imaging using micro-convex-mirror arrays,” Opt. Express 12(6), 1077–1083 (2004).
    [CrossRef] [PubMed]
  13. M. Okui, J. Arai, Y. Nojiri, and F. Okano, “Optical screen for direct projection of integral imaging,” Appl. Opt. 45(36), 9132–9139 (2006).
    [CrossRef] [PubMed]
  14. J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29(23), 2734–2736 (2004).
    [CrossRef] [PubMed]
  15. H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express 14(12), 5183–5190 (2006).
    [CrossRef] [PubMed]
  16. S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. 31(19), 2852–2854 (2006).
    [CrossRef] [PubMed]
  17. Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47(27), 4927–4934 (2008).
    [CrossRef] [PubMed]
  18. J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure,” Appl. Opt. 48(5), 998–1007 (2009).
    [CrossRef] [PubMed]
  19. J. Hong, Y. Kim, S. Park, S. Min, and B. Lee, “3-D/2-D convertible projection-type integral imaging system by use of half convex mirror array,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JMA17.

2009

2008

2007

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1647–1658 (2007).
[CrossRef]

2006

2004

2002

1908

G. Lippmann, “La photographie integrale,” Acad. Sci., Paris, C. R. 146, 446–451 (1908).

Arai, J.

Benzie, P.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1647–1658 (2007).
[CrossRef]

Cho, S.-W.

Choi, H.

Haino, Y.

Hong, J.

Hong, K.

Hopf, K.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1647–1658 (2007).
[CrossRef]

Jang, J.-S.

Javidi, B.

Jeong, M.-O.

Jeong, Y.

Jung, J.-H.

Jung, S.

Kawakita, M.

Kim, H.-R.

Kim, J.

Kim, N.

Kim, Y.

Y. Kim, S. G. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt. 48(34), H71–H76 (2009).
[CrossRef] [PubMed]

J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure,” Appl. Opt. 48(5), 998–1007 (2009).
[CrossRef] [PubMed]

J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure,” Appl. Opt. 48(5), 998–1007 (2009).
[CrossRef] [PubMed]

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47(27), 4927–4934 (2008).
[CrossRef] [PubMed]

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47(27), 4927–4934 (2008).
[CrossRef] [PubMed]

S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. 31(19), 2852–2854 (2006).
[CrossRef] [PubMed]

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29(23), 2734–2736 (2004).
[CrossRef] [PubMed]

Lee, B.

J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure,” Appl. Opt. 48(5), 998–1007 (2009).
[CrossRef] [PubMed]

Y. Kim, S. G. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt. 48(34), H71–H76 (2009).
[CrossRef] [PubMed]

J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
[CrossRef] [PubMed]

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47(27), 4927–4934 (2008).
[CrossRef] [PubMed]

S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. 31(19), 2852–2854 (2006).
[CrossRef] [PubMed]

H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express 14(12), 5183–5190 (2006).
[CrossRef] [PubMed]

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29(23), 2734–2736 (2004).
[CrossRef] [PubMed]

S.-W. Min, J. Kim, and B. Lee, “Wide-viewing projection-type integral imaging system with an embossed screen,” Opt. Lett. 29(20), 2420–2422 (2004).
[CrossRef] [PubMed]

Y. Jeong, S. Jung, J.-H. Park, and B. Lee, “Reflection-type integral imaging scheme for displaying three-dimensional images,” Opt. Lett. 27(9), 704–706 (2002).
[CrossRef]

Lee, S.-D.

Lippmann, G.

G. Lippmann, “La photographie integrale,” Acad. Sci., Paris, C. R. 146, 446–451 (1908).

Min, S.-W.

Nojiri, Y.

Okano, F.

Okui, M.

Park, J.-H.

Park, S. G.

Poon, T.-C.

Rakkolainen, I.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1647–1658 (2007).
[CrossRef]

Sainov, V.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1647–1658 (2007).
[CrossRef]

Sasaki, H.

Sato, M.

Suehiro, K.

Surman, P.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1647–1658 (2007).
[CrossRef]

Urey, H.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1647–1658 (2007).
[CrossRef]

von Kopylow, C.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1647–1658 (2007).
[CrossRef]

Watson, J.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1647–1658 (2007).
[CrossRef]

Yoshimura, M.

Acad. Sci., Paris, C. R.

G. Lippmann, “La photographie integrale,” Acad. Sci., Paris, C. R. 146, 446–451 (1908).

Appl. Opt.

IEEE Trans. Circ. Syst. Video Tech.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1647–1658 (2007).
[CrossRef]

J. Opt. Soc. Korea

Opt. Express

Opt. Lett.

Other

J. Hong, Y. Kim, S. Park, S. Min, and B. Lee, “3-D/2-D convertible projection-type integral imaging system by use of half convex mirror array,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JMA17.

B. Lee, J.-H. Park, and S.-W. Min, Digital Holography and Three-Dimensional Display, T.-C. Poon, ed. (Springer US, 2006), Chap. 12.

B. Javidi, and F. Okano, eds., Three Dimensional Television, Video, and Display Technology (Springer, 2002).

Supplementary Material (1)

» Media 1: AVI (2452 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Two categories of projection-type InIm. (a) Rear projection-type and (b) frontal projection-type.

Fig. 2
Fig. 2

The proposed structure of CHMA. (a) Cross sectional view of the CHMA. (b) Effect on the incident light when the incidental direction is the concave side and (c) the convex side of the CHMA.

Fig. 3
Fig. 3

System configuration of the proposed method.

Fig. 4
Fig. 4

Operation of the proposed system. (a) 3D mode. (b) 2D mode. (c) 3D on 2D mode.

Fig. 5
Fig. 5

Fabrication process of the prototype of CHMA.

Fig. 6
Fig. 6

Camera captured image of the prototype. (a) Frontal side of the prototype. The concave mirror side is used as the frontal side for this prototype. (b) Rear side of the prototype. On the rear side, the rear projection-type screen is attached. (c) Cross sectional view of the prototype. Three layers – the base, metallic and cover layers - can be investigated.

Fig. 7
Fig. 7

Comparison of the 2D images shown through the CHMA and the base lens array. (a) Highly textured image is used as the test 2D image. Part of the 2D image indicated as the red square box in the original image is magnified to show the details of the result. (b) A landscape image is used for the comparison of a natural image.

Fig. 8
Fig. 8

System configuration of the experimental setup.

Fig. 9
Fig. 9

Camera captured images of the integrated images displayed by the 3D mode of our proposed system.

Fig. 10
Fig. 10

Camera captured image of the displayed images in ‘3D on 2D mode’ of the prototype. Original image used for 2D image is shown in the left side of the figure; the main gate of Seoul National University.

Fig. 11
Fig. 11

Operation of our system in converting between 3D, 2D and 3D on 2D modes. (Media 1, 2.39MB)

Tables (1)

Tables Icon

Table 1 Specification of the prototype

Metrics