Abstract

We report greatly enhanced transmission distance of multimode vertical-cavity surface-emitting lasers (MM-VCSELs) over standard single-mode fiber using optical injection locking. Transmission distance as high as 90 km is achieved at 10 Gb/s by frequency chirp inversion and higher order transverse mode suppression.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, “10 Gbit/s VCSELs for Datacom: Devices and applications,” Proc. SPIE 4942, 29 (2003).
    [CrossRef]
  2. G. P. Agrawal, “Lightwave Systems” Ch. 5 in Fiber-Optic Communication Systems (Wiley, 2002)
  3. D. Parekh, X. Zhao, W. Hofmann, M. C. Amann, L. A. Zenteno, and C. J. Chang-Hasnain, “Greatly enhanced modulation response of injection-locked multimode VCSELs,” Opt. Express 16(26), 21582–21586 (2008).
    [CrossRef] [PubMed]
  4. X. Zhao, B. Zhang, L. Christen, D. Parekh, W. Hofmann, M. C. Amann, F. Koyama, A. E. Willner, and C. J. Chang-Hasnain, “Greatly increased fiber transmission distance with an optically injection-locked vertical-cavity surface-emitting laser,” Opt. Express 17(16), 13785–13791 (2009).
    [CrossRef] [PubMed]
  5. T. L. Koch and R. A. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett. 48(10), 613 (1986).
    [CrossRef]
  6. S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightwave Technol. 12(3), 418–424 (1994).
    [CrossRef]
  7. C.-H. Chang, L. Chrostowski, C. J. Chang-Hasnain, and W. W. Chow, “Study of long-wavelength VCSEL-VCSEL injection locking for 2.5-Gb/s transmission,” IEEE Photon. Technol. Lett. 14(11), 1635–1637 (2002).
    [CrossRef]
  8. W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett. 42(17), 976–977 (2006).
    [CrossRef]
  9. D. Parekh, W. Yang, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Isolator-Less Optically Injection-Locked 1.55-μm VCSELs for Upstream Transmitters in WDM-PONs,” OFC, paper OThA4 (2009).
  10. L.-S. Yan, Y. Wang, B. Zhang, C. Yu, J. McGeehan, L. Paraschis, and A. E. Willner, “Reach extension in 10-Gb/s directly modulated transmission systems using asymmetric and narrowband optical filtering,” Opt. Express 13(13), 5106–5115 (2005).
    [CrossRef] [PubMed]
  11. W. Yang, P. Guo, D. Parekh, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Physical Origin of Data Pattern Inversion in Optical Injection-Locked VCSELs,” in FiO, paper FTuW2 (2009).
  12. W. Yang, P. Guo, D. Parekh, and C. J. Chang-Hasnain, “Reflection-mode Optical Injection Locking”, manuscript under preparation.
  13. C. J. Chang-Hasnain and X. Zhao Ultra-high speed VCSEL modulation by injection locking (Optical Fiber Telecommunication V A, Components and Subsystems, Academic Press, 2008) pp. 145–182.

2009

2008

2006

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett. 42(17), 976–977 (2006).
[CrossRef]

2005

2003

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, “10 Gbit/s VCSELs for Datacom: Devices and applications,” Proc. SPIE 4942, 29 (2003).
[CrossRef]

2002

C.-H. Chang, L. Chrostowski, C. J. Chang-Hasnain, and W. W. Chow, “Study of long-wavelength VCSEL-VCSEL injection locking for 2.5-Gb/s transmission,” IEEE Photon. Technol. Lett. 14(11), 1635–1637 (2002).
[CrossRef]

1994

S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightwave Technol. 12(3), 418–424 (1994).
[CrossRef]

1986

T. L. Koch and R. A. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett. 48(10), 613 (1986).
[CrossRef]

Amann, M. C.

Amann, M.-C.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett. 42(17), 976–977 (2006).
[CrossRef]

Bohm, G.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett. 42(17), 976–977 (2006).
[CrossRef]

Brunner, M.

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, “10 Gbit/s VCSELs for Datacom: Devices and applications,” Proc. SPIE 4942, 29 (2003).
[CrossRef]

Burkhard, H.

S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightwave Technol. 12(3), 418–424 (1994).
[CrossRef]

Chang, C.-H.

C.-H. Chang, L. Chrostowski, C. J. Chang-Hasnain, and W. W. Chow, “Study of long-wavelength VCSEL-VCSEL injection locking for 2.5-Gb/s transmission,” IEEE Photon. Technol. Lett. 14(11), 1635–1637 (2002).
[CrossRef]

Chang-Hasnain, C. J.

Chow, W. W.

C.-H. Chang, L. Chrostowski, C. J. Chang-Hasnain, and W. W. Chow, “Study of long-wavelength VCSEL-VCSEL injection locking for 2.5-Gb/s transmission,” IEEE Photon. Technol. Lett. 14(11), 1635–1637 (2002).
[CrossRef]

Christen, L.

Chrostowski, L.

C.-H. Chang, L. Chrostowski, C. J. Chang-Hasnain, and W. W. Chow, “Study of long-wavelength VCSEL-VCSEL injection locking for 2.5-Gb/s transmission,” IEEE Photon. Technol. Lett. 14(11), 1635–1637 (2002).
[CrossRef]

Eitel, S.

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, “10 Gbit/s VCSELs for Datacom: Devices and applications,” Proc. SPIE 4942, 29 (2003).
[CrossRef]

Gauggel, H.-P.

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, “10 Gbit/s VCSELs for Datacom: Devices and applications,” Proc. SPIE 4942, 29 (2003).
[CrossRef]

Gulden, K. H.

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, “10 Gbit/s VCSELs for Datacom: Devices and applications,” Proc. SPIE 4942, 29 (2003).
[CrossRef]

Guo, P.

W. Yang, P. Guo, D. Parekh, and C. J. Chang-Hasnain, “Reflection-mode Optical Injection Locking”, manuscript under preparation.

Hoevel, R.

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, “10 Gbit/s VCSELs for Datacom: Devices and applications,” Proc. SPIE 4942, 29 (2003).
[CrossRef]

Hofmann, W.

Hold, A.

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, “10 Gbit/s VCSELs for Datacom: Devices and applications,” Proc. SPIE 4942, 29 (2003).
[CrossRef]

Hunziker, S. G.

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, “10 Gbit/s VCSELs for Datacom: Devices and applications,” Proc. SPIE 4942, 29 (2003).
[CrossRef]

Knight, G.

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, “10 Gbit/s VCSELs for Datacom: Devices and applications,” Proc. SPIE 4942, 29 (2003).
[CrossRef]

Koch, T. L.

T. L. Koch and R. A. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett. 48(10), 613 (1986).
[CrossRef]

Koyama, F.

Linke, R. A.

T. L. Koch and R. A. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett. 48(10), 613 (1986).
[CrossRef]

Liu, Y.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett. 42(17), 976–977 (2006).
[CrossRef]

McGeehan, J.

Mohrdiek, S.

S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightwave Technol. 12(3), 418–424 (1994).
[CrossRef]

Moser, M.

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, “10 Gbit/s VCSELs for Datacom: Devices and applications,” Proc. SPIE 4942, 29 (2003).
[CrossRef]

Ortsiefer, M.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett. 42(17), 976–977 (2006).
[CrossRef]

Paraschis, L.

Parekh, D.

Vez, D.

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, “10 Gbit/s VCSELs for Datacom: Devices and applications,” Proc. SPIE 4942, 29 (2003).
[CrossRef]

Walter, H.

S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightwave Technol. 12(3), 418–424 (1994).
[CrossRef]

Wang, Y.

Willner, A. E.

Yan, L.-S.

Yang, W.

W. Yang, P. Guo, D. Parekh, and C. J. Chang-Hasnain, “Reflection-mode Optical Injection Locking”, manuscript under preparation.

Yu, C.

Zenteno, L. A.

Zhang, B.

Zhao, X.

Zhu, N. H.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett. 42(17), 976–977 (2006).
[CrossRef]

Appl. Phys. Lett.

T. L. Koch and R. A. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett. 48(10), 613 (1986).
[CrossRef]

Electron. Lett.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett. 42(17), 976–977 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

C.-H. Chang, L. Chrostowski, C. J. Chang-Hasnain, and W. W. Chow, “Study of long-wavelength VCSEL-VCSEL injection locking for 2.5-Gb/s transmission,” IEEE Photon. Technol. Lett. 14(11), 1635–1637 (2002).
[CrossRef]

J. Lightwave Technol.

S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightwave Technol. 12(3), 418–424 (1994).
[CrossRef]

Opt. Express

Proc. SPIE

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, “10 Gbit/s VCSELs for Datacom: Devices and applications,” Proc. SPIE 4942, 29 (2003).
[CrossRef]

Other

G. P. Agrawal, “Lightwave Systems” Ch. 5 in Fiber-Optic Communication Systems (Wiley, 2002)

D. Parekh, W. Yang, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Isolator-Less Optically Injection-Locked 1.55-μm VCSELs for Upstream Transmitters in WDM-PONs,” OFC, paper OThA4 (2009).

W. Yang, P. Guo, D. Parekh, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Physical Origin of Data Pattern Inversion in Optical Injection-Locked VCSELs,” in FiO, paper FTuW2 (2009).

W. Yang, P. Guo, D. Parekh, and C. J. Chang-Hasnain, “Reflection-mode Optical Injection Locking”, manuscript under preparation.

C. J. Chang-Hasnain and X. Zhao Ultra-high speed VCSEL modulation by injection locking (Optical Fiber Telecommunication V A, Components and Subsystems, Academic Press, 2008) pp. 145–182.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of experimental setup

Fig. 2
Fig. 2

Optical spectra of the same 15 μm MM VCSEL modulated at 10 Gb/s free-running (top) and under injection locking (bottom). VCSEL bias is shown for each.

Fig. 3
Fig. 3

Measured intensity and chirp waveforms for free-running and R = 6 dB optically injection-locked 10 μm aperture MM VCSELs. The peak-to-peak transient (above line) and adiabatic (below line) chirp are reduced by a factor of 6 through injection locking.

Fig. 4
Fig. 4

Measured intensity and chirp waveforms for free-running, R = 3 dB, and R = 6 dB optically injection-locked 15 μm aperture MM VCSELs. The peak-to-peak transient (above line) and adiabatic (below line) chirp are reduced by almost a factor of 3 through injection locking.

Fig. 5
Fig. 5

Transmission measurements demonstrating distance enhancement of a direct-modulated OIL 10 μm aperture MM VCSEL with negative chirp at 10 Gb/s. Optical eye diagrams for OIL VCSEL at 0 km, after 25-km, 55-km and 85-km transmission are shown.

Fig. 6
Fig. 6

Transmission measurements demonstrating distance enhancement of a directly-modulated OIL 15 μm aperture MM VCSEL at R = 3 and 6 dB at 10 Gb/s. Eye diagrams for OIL VCSEL at 0 km and after fiber transmission are shown.

Fig. 7
Fig. 7

Interferometric model of optically injection locked VCSEL. Top path represents light entering VCSEL cavity, where OIL rate equations determine output. Bottom path represents reflection off top facet inducing a ~π phase shift

Metrics