Abstract

An image-patterned molecular delivery system for mammalian cells is demonstrated by pulsed laser irradiation of gold particles immobilized on a substrate below a cell monolayer. Patterned cavitation bubble nucleation was captured using a time-resolved imaging system and molecular delivery verified by observing the uptake of a membrane-impermeable fluorescent dye, calcein. Delivery efficiency as high as 90% was observed and multiplexed, patterned dye delivery was demonstrated.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Vogel, J. Noack, G. Hűttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [CrossRef]
  2. U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
    [CrossRef] [PubMed]
  3. C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
    [CrossRef] [PubMed]
  4. C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt. 10(6), 064012 (2005).
    [CrossRef]
  5. V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
    [CrossRef] [PubMed]
  6. S. J. Henley, J. D. Carey, and S. R. P. Silva, “Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films,” Phys. Rev. B 72(19), 195408 (2005).
    [CrossRef]
  7. J. Trice, D. Thomas, C. Favazza, R. Rureshkumar, and R. Kalyanaraman, “Pulsed-laser-induced dewetting in nanoscopic metal films: Theory and experiments,” Phys. Rev. B 75(23), 235439 (2007).
    [CrossRef]
  8. E. D. Tsagarakis, C. Lew, M. O. Thompson, and E. P. Giannelis, “Nanocrystalline barium titanate films on flexible plastic substrates via pulsed laser annealing,” Appl. Phys. Lett. 89(20), 20910 (2006).
    [CrossRef]
  9. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  10. P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12(3), 788–800 (1996).
    [CrossRef]
  11. C. E. Brennen, “Phase change, nucleation and cavitation,” in Cavitation and Bubble Dynamics, (Oxford University Press, New York, 2005).
  12. G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. (Leipzig) 25, 377 (1908).
  13. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
    [CrossRef] [PubMed]
  14. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  15. H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3(9), 296–298 (1952).
    [CrossRef]
  16. D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38(6), 631–642 (2006).
    [CrossRef] [PubMed]
  17. I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
    [CrossRef] [PubMed]

2007 (1)

J. Trice, D. Thomas, C. Favazza, R. Rureshkumar, and R. Kalyanaraman, “Pulsed-laser-induced dewetting in nanoscopic metal films: Theory and experiments,” Phys. Rev. B 75(23), 235439 (2007).
[CrossRef]

2006 (5)

E. D. Tsagarakis, C. Lew, M. O. Thompson, and E. P. Giannelis, “Nanocrystalline barium titanate films on flexible plastic substrates via pulsed laser annealing,” Appl. Phys. Lett. 89(20), 20910 (2006).
[CrossRef]

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[CrossRef] [PubMed]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38(6), 631–642 (2006).
[CrossRef] [PubMed]

I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
[CrossRef] [PubMed]

2005 (3)

S. J. Henley, J. D. Carey, and S. R. P. Silva, “Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films,” Phys. Rev. B 72(19), 195408 (2005).
[CrossRef]

A. Vogel, J. Noack, G. Hűttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt. 10(6), 064012 (2005).
[CrossRef]

2003 (1)

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

2002 (1)

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[CrossRef] [PubMed]

1996 (1)

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12(3), 788–800 (1996).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1952 (1)

H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3(9), 296–298 (1952).
[CrossRef]

1908 (1)

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. (Leipzig) 25, 377 (1908).

Anderson, R. R.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Brandes, R.

I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
[CrossRef] [PubMed]

Carey, J. D.

S. J. Henley, J. D. Carey, and S. R. P. Silva, “Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films,” Phys. Rev. B 72(19), 195408 (2005).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Clark, I. B.

I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
[CrossRef] [PubMed]

Dahmen, C.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[CrossRef] [PubMed]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Endl, E.

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt. 10(6), 064012 (2005).
[CrossRef]

Favazza, C.

J. Trice, D. Thomas, C. Favazza, R. Rureshkumar, and R. Kalyanaraman, “Pulsed-laser-induced dewetting in nanoscopic metal films: Theory and experiments,” Phys. Rev. B 75(23), 235439 (2007).
[CrossRef]

Fieck, A.

I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
[CrossRef] [PubMed]

Gallina, M.

I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
[CrossRef] [PubMed]

Gerdes, J.

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt. 10(6), 064012 (2005).
[CrossRef]

Giannelis, E. P.

E. D. Tsagarakis, C. Lew, M. O. Thompson, and E. P. Giannelis, “Nanocrystalline barium titanate films on flexible plastic substrates via pulsed laser annealing,” Appl. Phys. Lett. 89(20), 20910 (2006).
[CrossRef]

Goldenberg, H.

H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3(9), 296–298 (1952).
[CrossRef]

Hanania, E. G.

I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
[CrossRef] [PubMed]

Henley, S. J.

S. J. Henley, J. D. Carey, and S. R. P. Silva, “Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films,” Phys. Rev. B 72(19), 195408 (2005).
[CrossRef]

Huttman, G.

A. Vogel, J. Noack, G. Hűttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Hüttmann, G.

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt. 10(6), 064012 (2005).
[CrossRef]

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Joe, E. K.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kalyanaraman, R.

J. Trice, D. Thomas, C. Favazza, R. Rureshkumar, and R. Kalyanaraman, “Pulsed-laser-induced dewetting in nanoscopic metal films: Theory and experiments,” Phys. Rev. B 75(23), 235439 (2007).
[CrossRef]

Koller, M. R.

I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
[CrossRef] [PubMed]

König, K.

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[CrossRef] [PubMed]

Kotaidis, V.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[CrossRef] [PubMed]

Lapotko, D. O.

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38(6), 631–642 (2006).
[CrossRef] [PubMed]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Lew, C.

E. D. Tsagarakis, C. Lew, M. O. Thompson, and E. P. Giannelis, “Nanocrystalline barium titanate films on flexible plastic substrates via pulsed laser annealing,” Appl. Phys. Lett. 89(20), 20910 (2006).
[CrossRef]

Lin, C. P.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Lukianova, E.

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38(6), 631–642 (2006).
[CrossRef] [PubMed]

Mie, G.

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. (Leipzig) 25, 377 (1908).

Mulvaney, P.

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12(3), 788–800 (1996).
[CrossRef]

Noack, J.

A. Vogel, J. Noack, G. Hűttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Oraevsky, A. A.

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38(6), 631–642 (2006).
[CrossRef] [PubMed]

Palsson, B. O.

I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
[CrossRef] [PubMed]

Paltauf, G.

A. Vogel, J. Noack, G. Hűttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Pitsillides, C. M.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Plech, A.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[CrossRef] [PubMed]

Rahmanzadeh, R.

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt. 10(6), 064012 (2005).
[CrossRef]

Rureshkumar, R.

J. Trice, D. Thomas, C. Favazza, R. Rureshkumar, and R. Kalyanaraman, “Pulsed-laser-induced dewetting in nanoscopic metal films: Theory and experiments,” Phys. Rev. B 75(23), 235439 (2007).
[CrossRef]

Silva, S. R. P.

S. J. Henley, J. D. Carey, and S. R. P. Silva, “Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films,” Phys. Rev. B 72(19), 195408 (2005).
[CrossRef]

Springer, F.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[CrossRef] [PubMed]

Stevens, J.

I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
[CrossRef] [PubMed]

Thomas, D.

J. Trice, D. Thomas, C. Favazza, R. Rureshkumar, and R. Kalyanaraman, “Pulsed-laser-induced dewetting in nanoscopic metal films: Theory and experiments,” Phys. Rev. B 75(23), 235439 (2007).
[CrossRef]

Thompson, M. O.

E. D. Tsagarakis, C. Lew, M. O. Thompson, and E. P. Giannelis, “Nanocrystalline barium titanate films on flexible plastic substrates via pulsed laser annealing,” Appl. Phys. Lett. 89(20), 20910 (2006).
[CrossRef]

Tirlapur, U. K.

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[CrossRef] [PubMed]

Tranter, C. J.

H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3(9), 296–298 (1952).
[CrossRef]

Trice, J.

J. Trice, D. Thomas, C. Favazza, R. Rureshkumar, and R. Kalyanaraman, “Pulsed-laser-induced dewetting in nanoscopic metal films: Theory and experiments,” Phys. Rev. B 75(23), 235439 (2007).
[CrossRef]

Tsagarakis, E. D.

E. D. Tsagarakis, C. Lew, M. O. Thompson, and E. P. Giannelis, “Nanocrystalline barium titanate films on flexible plastic substrates via pulsed laser annealing,” Appl. Phys. Lett. 89(20), 20910 (2006).
[CrossRef]

Vogel, A.

A. Vogel, J. Noack, G. Hűttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

von Plessen, G.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[CrossRef] [PubMed]

Wei, X.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Yao, C.

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt. 10(6), 064012 (2005).
[CrossRef]

Zhang, Z.

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt. 10(6), 064012 (2005).
[CrossRef]

Ann. Phys. (Leipzig) (1)

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. (Leipzig) 25, 377 (1908).

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Hűttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

E. D. Tsagarakis, C. Lew, M. O. Thompson, and E. P. Giannelis, “Nanocrystalline barium titanate films on flexible plastic substrates via pulsed laser annealing,” Appl. Phys. Lett. 89(20), 20910 (2006).
[CrossRef]

Biophys. J. (1)

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Br. J. Appl. Phys. (1)

H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3(9), 296–298 (1952).
[CrossRef]

J. Biomed. Opt. (2)

I. B. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, and M. R. Koller, “Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types,” J. Biomed. Opt. 11(1), 014034 (2006).
[CrossRef] [PubMed]

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt. 10(6), 064012 (2005).
[CrossRef]

J. Chem. Phys. (1)

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Langmuir (1)

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12(3), 788–800 (1996).
[CrossRef]

Lasers Surg. Med. (1)

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38(6), 631–642 (2006).
[CrossRef] [PubMed]

Nature (1)

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[CrossRef] [PubMed]

Phys. Rev. B (3)

S. J. Henley, J. D. Carey, and S. R. P. Silva, “Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films,” Phys. Rev. B 72(19), 195408 (2005).
[CrossRef]

J. Trice, D. Thomas, C. Favazza, R. Rureshkumar, and R. Kalyanaraman, “Pulsed-laser-induced dewetting in nanoscopic metal films: Theory and experiments,” Phys. Rev. B 75(23), 235439 (2007).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Other (2)

C. E. Brennen, “Phase change, nucleation and cavitation,” in Cavitation and Bubble Dynamics, (Oxford University Press, New York, 2005).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the device capable of image-patterned molecular delivery using a gold particle coated substrate.

Fig. 2
Fig. 2

Schematic of the experiment setup for light-patterned molecular delivery and the time-resolved imaging system used to capture the cavitation bubble dynamics.

Fig. 3
Fig. 3

Pulsed laser annealing of gold films. (a) Schematic of the formation of gold particles. (b) SEM images of the 10 nm gold film annealed at 49.5 mJ/cm2. (c) Measured particle size distribution. Bar=5 µm.

Fig. 4
Fig. 4

Image patterned bubble nucleation. (a) Bubble pattern by irradiating a “UCLA” light pattern onto the substrate. Laser fluence = 153.5 mJ/cm2. Bar = 50 µm. (b) Bubble nucleation (indicated by red arrows) was observed at laser fluences higher than 39 mJ/cm2. Field of view = 10×10 μm. (c) Calculated temperature increase at the surface of the gold particle (50, 118 and 200 nm in diameter) at the end of the 6 ns laser pulse under various laser fluences.

Fig. 5
Fig. 5

Molecular delivery efficiency and cell viability assays in HeLa cells under (a) varying laser fluences (only irradiated with 1 pulse in each case) and (b) varying applied laser pulse numbers. Fluorescent images showing calcein (green) uptake within the laser irradiation pattern and propidium iodide (red) staining of dead cells. Bar = 50 µm.

Fig. 6
Fig. 6

(a,c) Calcein delivery efficiency and cell viability under varying laser fluences (only irradiated with 1 pulse in each case). (b,d) Efficiency and viability under varying applied laser pulse numbers at 60 mJ/cm2 for HeLa (b) and at 36 mJ/cm2 for HEK 293T (d). The viability and efficiency values are represented as mean ± standard deviation. Number of experiments conducted are n=3 for HeLa and n=1 for HEK 293T.

Fig. 7
Fig. 7

Multiplexed dye delivery. (a) Calcein uptake was induced in the vertical bar area (green channel). (b) Dextran-tetramethylrhodamine uptake was induced in the horizontal bar area (yellow channel). (c) Delivery for both calcein and rhodamine was induced in the 4 corners of the square pattern in the cell culture. (d) Phase contrast image shows a confluent monolayer of viable HeLa cells that were imaged by immunofluorescence microscopy in panels (a-c). Bar = 100 µm.

Tables (1)

Tables Icon

Table 1 Calculated Stokes radius of fluorescent dye molecules

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T t κ 2 T = A ρ c p
A = ( π R 2 ) Q a b s 4 3 π R 3 H τ p u l s e = 3 Q a b s H 4 R τ p u l s e
r s = k B T 6 π η D

Metrics