Abstract

We demonstrate the shift characteristics of four-wave mixing (FWM) beam spots which are controlled by the strong laser fields via the large cross-Kerr nonlinearity. The shift distances and directions are determined by the nonlinear dispersions. Based on such spatial displacements of the FWM beams, as well as the probe beam, we experimentally demonstrate spatial optical switching for one beam or multiple optical beams, which can be used for all-optical switching, switching arrays and routers.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308(5722), 672–674 (2005).
    [CrossRef] [PubMed]
  2. A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30(7), 699–701 (2005).
    [CrossRef] [PubMed]
  3. M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of Absorptive Photon Switching by Quantum Interference,” Phys. Rev. A 64(4), 041801 (2001).
    [CrossRef]
  4. Y. P. Zhang, Z. Q. Nie, H. B. Zheng, C. B. Li, J. P. Song, and M. Xiao, “Electromagnetically Induced Spatial Nonlinear Dispersion of Four-Wave Mixing,” Phys. Rev. A 80(1), 013835 (2009).
    [CrossRef]
  5. H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87(7), 073601 (2001).
    [CrossRef] [PubMed]
  6. M. Xiao, Yq. Li, Sz. Jin, and J. Gea-Banacloche, “Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
    [CrossRef] [PubMed]
  7. G. P. Agrawal, “Induced focusing of optical beams in self-defocusing nonlinear media,” Phys. Rev. Lett. 64(21), 2487–2490 (1990).
    [CrossRef] [PubMed]
  8. J. M. Hickmann, A. S. Gomes, and C. de Araújo, “Observation of spatial cross-phase modulation effects in a self-defocusing nonlinear medium,” Phys. Rev. Lett. 68(24), 3547–3550 (1992).
    [CrossRef] [PubMed]
  9. Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
    [CrossRef] [PubMed]
  10. B. S. Ham and P. R. Hemmer, “Coherence switching in a four-level system: quantum switching,” Phys. Rev. Lett. 84(18), 4080–4083 (2000).
    [CrossRef] [PubMed]
  11. J. P. Zhang, G. Hernandez, and Y. F. Zhu, “Optical switching mediated by quantum interference of Raman transitions,” Opt. Express 16(23), 19112–19117 (2008).
    [CrossRef]
  12. R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-Wave-Mixing Stopped Light in Hot Atomic Rubidium Vapour,” Nat. Photonics 3(2), 103–106 (2009).
    [CrossRef]
  13. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
    [CrossRef] [PubMed]

2009 (3)

Y. P. Zhang, Z. Q. Nie, H. B. Zheng, C. B. Li, J. P. Song, and M. Xiao, “Electromagnetically Induced Spatial Nonlinear Dispersion of Four-Wave Mixing,” Phys. Rev. A 80(1), 013835 (2009).
[CrossRef]

Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[CrossRef] [PubMed]

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-Wave-Mixing Stopped Light in Hot Atomic Rubidium Vapour,” Nat. Photonics 3(2), 103–106 (2009).
[CrossRef]

2008 (2)

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

J. P. Zhang, G. Hernandez, and Y. F. Zhu, “Optical switching mediated by quantum interference of Raman transitions,” Opt. Express 16(23), 19112–19117 (2008).
[CrossRef]

2005 (2)

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30(7), 699–701 (2005).
[CrossRef] [PubMed]

2001 (2)

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of Absorptive Photon Switching by Quantum Interference,” Phys. Rev. A 64(4), 041801 (2001).
[CrossRef]

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87(7), 073601 (2001).
[CrossRef] [PubMed]

2000 (1)

B. S. Ham and P. R. Hemmer, “Coherence switching in a four-level system: quantum switching,” Phys. Rev. Lett. 84(18), 4080–4083 (2000).
[CrossRef] [PubMed]

1995 (1)

M. Xiao, Yq. Li, Sz. Jin, and J. Gea-Banacloche, “Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

1992 (1)

J. M. Hickmann, A. S. Gomes, and C. de Araújo, “Observation of spatial cross-phase modulation effects in a self-defocusing nonlinear medium,” Phys. Rev. Lett. 68(24), 3547–3550 (1992).
[CrossRef] [PubMed]

1990 (1)

G. P. Agrawal, “Induced focusing of optical beams in self-defocusing nonlinear media,” Phys. Rev. Lett. 64(21), 2487–2490 (1990).
[CrossRef] [PubMed]

Agrawal, G. P.

G. P. Agrawal, “Induced focusing of optical beams in self-defocusing nonlinear media,” Phys. Rev. Lett. 64(21), 2487–2490 (1990).
[CrossRef] [PubMed]

Anderson, B.

Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[CrossRef] [PubMed]

Boyer, V.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Brown, A. W.

Camacho, R. M.

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-Wave-Mixing Stopped Light in Hot Atomic Rubidium Vapour,” Nat. Photonics 3(2), 103–106 (2009).
[CrossRef]

Clark, S. M.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

Dawes, A. M. C.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

de Araújo, C.

J. M. Hickmann, A. S. Gomes, and C. de Araújo, “Observation of spatial cross-phase modulation effects in a self-defocusing nonlinear medium,” Phys. Rev. Lett. 68(24), 3547–3550 (1992).
[CrossRef] [PubMed]

Gauthier, D. J.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

Gea-Banacloche, J.

M. Xiao, Yq. Li, Sz. Jin, and J. Gea-Banacloche, “Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

Gomes, A. S.

J. M. Hickmann, A. S. Gomes, and C. de Araújo, “Observation of spatial cross-phase modulation effects in a self-defocusing nonlinear medium,” Phys. Rev. Lett. 68(24), 3547–3550 (1992).
[CrossRef] [PubMed]

Goorskey, D.

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87(7), 073601 (2001).
[CrossRef] [PubMed]

Ham, B. S.

B. S. Ham and P. R. Hemmer, “Coherence switching in a four-level system: quantum switching,” Phys. Rev. Lett. 84(18), 4080–4083 (2000).
[CrossRef] [PubMed]

Hemmer, P. R.

B. S. Ham and P. R. Hemmer, “Coherence switching in a four-level system: quantum switching,” Phys. Rev. Lett. 84(18), 4080–4083 (2000).
[CrossRef] [PubMed]

Hernandez, G.

Hickmann, J. M.

J. M. Hickmann, A. S. Gomes, and C. de Araújo, “Observation of spatial cross-phase modulation effects in a self-defocusing nonlinear medium,” Phys. Rev. Lett. 68(24), 3547–3550 (1992).
[CrossRef] [PubMed]

Howell, J. C.

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-Wave-Mixing Stopped Light in Hot Atomic Rubidium Vapour,” Nat. Photonics 3(2), 103–106 (2009).
[CrossRef]

Illing, L.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

Jin, Sz.

M. Xiao, Yq. Li, Sz. Jin, and J. Gea-Banacloche, “Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

Khadka, U.

Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[CrossRef] [PubMed]

Lett, P. D.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Li, C. B.

Y. P. Zhang, Z. Q. Nie, H. B. Zheng, C. B. Li, J. P. Song, and M. Xiao, “Electromagnetically Induced Spatial Nonlinear Dispersion of Four-Wave Mixing,” Phys. Rev. A 80(1), 013835 (2009).
[CrossRef]

Li, Yq.

M. Xiao, Yq. Li, Sz. Jin, and J. Gea-Banacloche, “Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

Marino, A. M.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Nie, Z. Q.

Y. P. Zhang, Z. Q. Nie, H. B. Zheng, C. B. Li, J. P. Song, and M. Xiao, “Electromagnetically Induced Spatial Nonlinear Dispersion of Four-Wave Mixing,” Phys. Rev. A 80(1), 013835 (2009).
[CrossRef]

Pooser, R. C.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Rickey, E. G.

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of Absorptive Photon Switching by Quantum Interference,” Phys. Rev. A 64(4), 041801 (2001).
[CrossRef]

Song, J. P.

Y. P. Zhang, Z. Q. Nie, H. B. Zheng, C. B. Li, J. P. Song, and M. Xiao, “Electromagnetically Induced Spatial Nonlinear Dispersion of Four-Wave Mixing,” Phys. Rev. A 80(1), 013835 (2009).
[CrossRef]

Vudyasetu, P. K.

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-Wave-Mixing Stopped Light in Hot Atomic Rubidium Vapour,” Nat. Photonics 3(2), 103–106 (2009).
[CrossRef]

Wang, H.

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87(7), 073601 (2001).
[CrossRef] [PubMed]

Xiao, M.

Y. P. Zhang, Z. Q. Nie, H. B. Zheng, C. B. Li, J. P. Song, and M. Xiao, “Electromagnetically Induced Spatial Nonlinear Dispersion of Four-Wave Mixing,” Phys. Rev. A 80(1), 013835 (2009).
[CrossRef]

Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[CrossRef] [PubMed]

A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30(7), 699–701 (2005).
[CrossRef] [PubMed]

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87(7), 073601 (2001).
[CrossRef] [PubMed]

M. Xiao, Yq. Li, Sz. Jin, and J. Gea-Banacloche, “Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

Yan, M.

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of Absorptive Photon Switching by Quantum Interference,” Phys. Rev. A 64(4), 041801 (2001).
[CrossRef]

Zhang, J. P.

Zhang, Y. P.

Y. P. Zhang, Z. Q. Nie, H. B. Zheng, C. B. Li, J. P. Song, and M. Xiao, “Electromagnetically Induced Spatial Nonlinear Dispersion of Four-Wave Mixing,” Phys. Rev. A 80(1), 013835 (2009).
[CrossRef]

Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[CrossRef] [PubMed]

Zheng, H. B.

Y. P. Zhang, Z. Q. Nie, H. B. Zheng, C. B. Li, J. P. Song, and M. Xiao, “Electromagnetically Induced Spatial Nonlinear Dispersion of Four-Wave Mixing,” Phys. Rev. A 80(1), 013835 (2009).
[CrossRef]

Zhu, Y. F.

J. P. Zhang, G. Hernandez, and Y. F. Zhu, “Optical switching mediated by quantum interference of Raman transitions,” Opt. Express 16(23), 19112–19117 (2008).
[CrossRef]

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of Absorptive Photon Switching by Quantum Interference,” Phys. Rev. A 64(4), 041801 (2001).
[CrossRef]

Nat. Photonics (1)

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-Wave-Mixing Stopped Light in Hot Atomic Rubidium Vapour,” Nat. Photonics 3(2), 103–106 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (2)

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of Absorptive Photon Switching by Quantum Interference,” Phys. Rev. A 64(4), 041801 (2001).
[CrossRef]

Y. P. Zhang, Z. Q. Nie, H. B. Zheng, C. B. Li, J. P. Song, and M. Xiao, “Electromagnetically Induced Spatial Nonlinear Dispersion of Four-Wave Mixing,” Phys. Rev. A 80(1), 013835 (2009).
[CrossRef]

Phys. Rev. Lett. (6)

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87(7), 073601 (2001).
[CrossRef] [PubMed]

M. Xiao, Yq. Li, Sz. Jin, and J. Gea-Banacloche, “Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

G. P. Agrawal, “Induced focusing of optical beams in self-defocusing nonlinear media,” Phys. Rev. Lett. 64(21), 2487–2490 (1990).
[CrossRef] [PubMed]

J. M. Hickmann, A. S. Gomes, and C. de Araújo, “Observation of spatial cross-phase modulation effects in a self-defocusing nonlinear medium,” Phys. Rev. Lett. 68(24), 3547–3550 (1992).
[CrossRef] [PubMed]

Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[CrossRef] [PubMed]

B. S. Ham and P. R. Hemmer, “Coherence switching in a four-level system: quantum switching,” Phys. Rev. Lett. 84(18), 4080–4083 (2000).
[CrossRef] [PubMed]

Science (2)

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) and (b) The diagrams of Na energy levels with different coupling schemes. The bold arrows refer to the dressing fields. (c) The experimental scheme and arrangements (Inset: the spatial alignments of the incident beams).

Fig. 3
Fig. 3

(a) Results of the optical switches and the spot shifts of the probe (lower) and E F 2 (upper) beams obtained from the CCD at Δ 1 = 18 GHz . The arrows are the initial position in x direction. The spatial shift of (b) the probe and (c) E F 2 beams in the ladder-type three-level atomic system with G 1 = 34 GHz at Δ 1 = 18 GHz and 250°C.

Fig. 2
Fig. 2

(a) Spatial dispersion curves of E F 2 in the ladder-type three-level system versus Δ 1 with G 1 = 52 GHz at 250°C. (b) The spatial displacement of E F 2 versus G 1 in the ladder-type three-level system at Δ 1 = 18 GHz and 250°C. (c) The spatial displacement of E F 2 versus atomic density N with G 1 = 52 GHz at Δ 1 = 18 GHz . The solid lines are theoretically calculated spatial shifts and the scattered points are the experimental results.

Fig. 4
Fig. 4

The switching processes of the dressing beam E 1 (square), E F 1 (triangle), E F 2 (circle), and the probe beam (diamond) in the ladder-type three-level system with G 1 = 21 GHz at Δ 1 = 18 GHz and 250°C.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E 3 z i 2 k 3 2 E 3 ξ 2 = i k 3 n 0 ( n 2 S 1 | E 3 | 2 + 2 n 2 X 1 | E 1 | 2 + 2 n 2 X 2 | E 2 | 2 ) E 3 ,
E F 1 z i 2 k F 1 2 E F 1 ξ 2 = i k F 1 n 0 ( n 2 S 2 | E F 1 | 2 + 2 n 2 X 3 | E 1 | 2 + 2 n 2 X 4 | E 2 | 2 + 2 n 2 X 5 | E 1 | 2 ) E F 1 ,
E F 2 z i 2 k F 2 2 E F 2 ξ 2 = i k F 2 n 0 ( n 2 S 3 | E F 2 | 2 + 2 n 2 X 6 | E 1 | 2 + 2 n 2 X 7 | E 2 | 2 + 2 n 2 X 8 | E 2 | 2 ) E F 2 ,
φ N L ( z , ξ ) = 2 k 3 , F 2 n 2 I 1 exp ( ξ 2 ) z / n 0 ,

Metrics