Abstract

A numerical study of the nanofocusing of surface plasmon polaritons (SPPs) by a pyramidal structure on a rectangular aperture is performed by the volume integral equation method. It is possible to perform nanofocusing using this structure by using a linearly polarized wave as the incident wave. The focusing process of SPPs by the tip of the pyramidal structure has been demonstrated numerically. The characteristics of the focused optical field near the tip have been investigated in detail. It was found to be similar to that of monopole rather than that of a tiny dipole. The optical field at the tip is sensitive to the local shape of the tip. The enhanced intensity on the tip increases with an increase in the aperture width.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ohtsu, and H. Hori, “Near-Field Nano-Optics: From Basic Principles to Nano-Fabrication and Nano-Photonics,” Plenum Pub. Corp. (1999).
  2. V. M. Shalaev and S. Kawata ed., “Nanophotonics with Surface Plasmons,” Elsevier Science Ltd. (2007).
  3. M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, “Principles of Nanophotonics,” Chapman & Hall (2008).
  4. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997).
    [CrossRef] [PubMed]
  5. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
    [CrossRef]
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  7. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
    [CrossRef]
  8. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  9. S. I. Bozhevolnyi, “Plasmonic Nanowaveguide and Circuits”, World Scientific, 2008.
  10. E. Oesterschulze, G. Georgiev, M. Müller-Wiegand, A. Vollkopf, and O. Rudow, “Transmission line probe based on a bow-tie antenna,” J. Microsc. 202(Pt 1), 39–44 (2001).
    [CrossRef] [PubMed]
  11. S. Xiaolei, L. Hesselink, and R. L. Thornton, “Greatly enhanced power throughput from a “C”-shaped metallic nano-aperture for near field optical applications”, Quantum Electronics and Laser Science Conference, 2002. Technical Digest. 40.
  12. A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801–210804 (2002).
    [CrossRef] [PubMed]
  13. K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210(Pt 3), 294–300 (2003).
    [CrossRef] [PubMed]
  14. K. V. Nerkararyan, “Superfocusing of a surface polariton in a wedge-like structure,” Phys. Lett. A 237(1-2), 103–105 (1997).
    [CrossRef]
  15. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785 (2000).
    [CrossRef]
  16. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
    [CrossRef] [PubMed]
  17. N. A. Janunts, K. S. Baghdasaryan, Kh. V. Nerkararyan and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Comm. 253, (2005).
  18. R. Ruppin, “Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip,” Phys. Lett. A 340(1-4), 299–302 (2005).
    [CrossRef]
  19. M. W. Vogel and K. Dmitri, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363(5-6), 507–511 (2007).
    [CrossRef]
  20. N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2, 1557-1955 (Print) 1557−1963 (Online) (2007).
  21. W. Chen and Q. Zhan, “Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination,” Opt. Express 15(7), 4106–4111 (2007).
    [CrossRef] [PubMed]
  22. T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Nanofocusing of radially polarized light with dielectric-metal-dielectric probe,” Opt. Express 17(11), 9191–9196 (2009).
    [CrossRef] [PubMed]
  23. D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rod,” J. Appl. Phys. 104(3), 034311 (2008).
    [CrossRef]
  24. W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
    [CrossRef]
  25. K. Kurihara, A. Otomo, A. Syouji, J. Takahara, K. Suzuki, and S. Yokoyama, “Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach,” J. Phys. A: Math. Theor. 40(41), 12479–12503 (2007).
    [CrossRef]
  26. K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables,” J. Phys. A: Math. Theor. 41(29), 295401 (2008).
    [CrossRef]
  27. A. Downes, D. Salter, and A. Elfick, “Simulations of atomic resolution tip-enhanced optical microscopy,” Opt. Express 14(23), 11324–11329 (2006).
    [CrossRef] [PubMed]
  28. A. E. Babayan and Kh. V. Nerkararyan, “The strong localization of surface plasmon polariton on a metal-coated tip of optical fiber,” Ultramicroscopy 107(12), 1136–1140 (2007).
    [CrossRef] [PubMed]
  29. J. H. Kim and K.-B. Song, “Recent progress of nano-technology with NSOM,” Micron 38(4), 409–426 (2007).
    [CrossRef]
  30. H. J. Maas, A. Naber, H. Fuchs, U. C. Fischer, J. C. Weeber, and A. Dereux, “Imaging of photonic nanopatterns by scanning near-field optical microscopy,” J. Opt. Soc. Am. B 19(6), 1295–1300 (2002).
    [CrossRef]
  31. H. J. Maas, J. Heimel, H. Fuchs, U. C. Fischer, J. C. Weeber, and A. Dereux, “Photonic nanopatterns of gold nanostructures indicate the excitation of surface plasmon modes of a wavelength of 50-100 nm by scanning near-field optical microscopy,” J. Microsc. 209(Pt 3), 241–248 (2003).
    [CrossRef] [PubMed]
  32. K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to-edge plasmon modes,” Applied Physics B: Lasers and Optics 93, 0946–2171 (Print) 1432–0649 (Online) (2008).
  33. D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).
    [CrossRef]
  34. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
    [CrossRef]
  35. K. Tanaka, M. Tanaka, and T. Sugiyama, “Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons,” Opt. Express 14(2), 832–846 (2006).
    [CrossRef] [PubMed]
  36. K. Tanaka, M. Tanaka, and K. Katayama, “Simulation of near-field scanning optical microscopy using a plasmonic gap probe,” Opt. Express 14(22), 10603–10613 (2006).
    [CrossRef] [PubMed]
  37. H. F. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030–5032 (2002).
    [CrossRef]
  38. A. V. Goncharenko, H. C. Chang, and J. K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107(2-3), 151–157 (2007).
    [CrossRef]
  39. M. W. Vogel and D. K. Gramotnev, “Optimization of plasmon nano-focusing in tapered metal rods,” J. Nanophotonics 2, 1–17 (2008).
    [CrossRef]
  40. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
    [CrossRef]
  41. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
    [CrossRef]

2009 (1)

2008 (3)

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rod,” J. Appl. Phys. 104(3), 034311 (2008).
[CrossRef]

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables,” J. Phys. A: Math. Theor. 41(29), 295401 (2008).
[CrossRef]

M. W. Vogel and D. K. Gramotnev, “Optimization of plasmon nano-focusing in tapered metal rods,” J. Nanophotonics 2, 1–17 (2008).
[CrossRef]

2007 (8)

A. E. Babayan and Kh. V. Nerkararyan, “The strong localization of surface plasmon polariton on a metal-coated tip of optical fiber,” Ultramicroscopy 107(12), 1136–1140 (2007).
[CrossRef] [PubMed]

J. H. Kim and K.-B. Song, “Recent progress of nano-technology with NSOM,” Micron 38(4), 409–426 (2007).
[CrossRef]

A. V. Goncharenko, H. C. Chang, and J. K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107(2-3), 151–157 (2007).
[CrossRef]

M. W. Vogel and K. Dmitri, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363(5-6), 507–511 (2007).
[CrossRef]

W. Chen and Q. Zhan, “Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination,” Opt. Express 15(7), 4106–4111 (2007).
[CrossRef] [PubMed]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).
[CrossRef]

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
[CrossRef]

K. Kurihara, A. Otomo, A. Syouji, J. Takahara, K. Suzuki, and S. Yokoyama, “Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach,” J. Phys. A: Math. Theor. 40(41), 12479–12503 (2007).
[CrossRef]

2006 (5)

2005 (1)

R. Ruppin, “Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip,” Phys. Lett. A 340(1-4), 299–302 (2005).
[CrossRef]

2004 (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[CrossRef] [PubMed]

2003 (4)

K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210(Pt 3), 294–300 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
[CrossRef]

H. J. Maas, J. Heimel, H. Fuchs, U. C. Fischer, J. C. Weeber, and A. Dereux, “Photonic nanopatterns of gold nanostructures indicate the excitation of surface plasmon modes of a wavelength of 50-100 nm by scanning near-field optical microscopy,” J. Microsc. 209(Pt 3), 241–248 (2003).
[CrossRef] [PubMed]

2002 (3)

H. J. Maas, A. Naber, H. Fuchs, U. C. Fischer, J. C. Weeber, and A. Dereux, “Imaging of photonic nanopatterns by scanning near-field optical microscopy,” J. Opt. Soc. Am. B 19(6), 1295–1300 (2002).
[CrossRef]

H. F. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030–5032 (2002).
[CrossRef]

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801–210804 (2002).
[CrossRef] [PubMed]

2001 (2)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

E. Oesterschulze, G. Georgiev, M. Müller-Wiegand, A. Vollkopf, and O. Rudow, “Transmission line probe based on a bow-tie antenna,” J. Microsc. 202(Pt 1), 39–44 (2001).
[CrossRef] [PubMed]

2000 (3)

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785 (2000).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[CrossRef]

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
[CrossRef]

1997 (2)

Andrews, S. R.

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
[CrossRef]

Antosiewicz, T. J.

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Babadjanyan, A. J.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785 (2000).
[CrossRef]

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
[CrossRef]

Babayan, A. E.

A. E. Babayan and Kh. V. Nerkararyan, “The strong localization of surface plasmon polariton on a metal-coated tip of optical fiber,” Ultramicroscopy 107(12), 1136–1140 (2007).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Berini, P.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Chang, H. C.

A. V. Goncharenko, H. C. Chang, and J. K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107(2-3), 151–157 (2007).
[CrossRef]

Chen, W.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

H. J. Maas, J. Heimel, H. Fuchs, U. C. Fischer, J. C. Weeber, and A. Dereux, “Photonic nanopatterns of gold nanostructures indicate the excitation of surface plasmon modes of a wavelength of 50-100 nm by scanning near-field optical microscopy,” J. Microsc. 209(Pt 3), 241–248 (2003).
[CrossRef] [PubMed]

H. J. Maas, A. Naber, H. Fuchs, U. C. Fischer, J. C. Weeber, and A. Dereux, “Imaging of photonic nanopatterns by scanning near-field optical microscopy,” J. Opt. Soc. Am. B 19(6), 1295–1300 (2002).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Ding, W.

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
[CrossRef]

Dmitri, K.

M. W. Vogel and K. Dmitri, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363(5-6), 507–511 (2007).
[CrossRef]

Downes, A.

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Elfick, A.

Fischer, U. C.

H. J. Maas, J. Heimel, H. Fuchs, U. C. Fischer, J. C. Weeber, and A. Dereux, “Photonic nanopatterns of gold nanostructures indicate the excitation of surface plasmon modes of a wavelength of 50-100 nm by scanning near-field optical microscopy,” J. Microsc. 209(Pt 3), 241–248 (2003).
[CrossRef] [PubMed]

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801–210804 (2002).
[CrossRef] [PubMed]

H. J. Maas, A. Naber, H. Fuchs, U. C. Fischer, J. C. Weeber, and A. Dereux, “Imaging of photonic nanopatterns by scanning near-field optical microscopy,” J. Opt. Soc. Am. B 19(6), 1295–1300 (2002).
[CrossRef]

Frey, H. F.

H. F. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030–5032 (2002).
[CrossRef]

Fuchs, H.

H. J. Maas, J. Heimel, H. Fuchs, U. C. Fischer, J. C. Weeber, and A. Dereux, “Photonic nanopatterns of gold nanostructures indicate the excitation of surface plasmon modes of a wavelength of 50-100 nm by scanning near-field optical microscopy,” J. Microsc. 209(Pt 3), 241–248 (2003).
[CrossRef] [PubMed]

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801–210804 (2002).
[CrossRef] [PubMed]

H. J. Maas, A. Naber, H. Fuchs, U. C. Fischer, J. C. Weeber, and A. Dereux, “Imaging of photonic nanopatterns by scanning near-field optical microscopy,” J. Opt. Soc. Am. B 19(6), 1295–1300 (2002).
[CrossRef]

Georgiev, G.

E. Oesterschulze, G. Georgiev, M. Müller-Wiegand, A. Vollkopf, and O. Rudow, “Transmission line probe based on a bow-tie antenna,” J. Microsc. 202(Pt 1), 39–44 (2001).
[CrossRef] [PubMed]

Goncharenko, A. V.

A. V. Goncharenko, H. C. Chang, and J. K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107(2-3), 151–157 (2007).
[CrossRef]

Gramotnev, D. K.

M. W. Vogel and D. K. Gramotnev, “Optimization of plasmon nano-focusing in tapered metal rods,” J. Nanophotonics 2, 1–17 (2008).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rod,” J. Appl. Phys. 104(3), 034311 (2008).
[CrossRef]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[CrossRef]

Guckenberger, R.

H. F. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030–5032 (2002).
[CrossRef]

Heimel, J.

H. J. Maas, J. Heimel, H. Fuchs, U. C. Fischer, J. C. Weeber, and A. Dereux, “Photonic nanopatterns of gold nanostructures indicate the excitation of surface plasmon modes of a wavelength of 50-100 nm by scanning near-field optical microscopy,” J. Microsc. 209(Pt 3), 241–248 (2003).
[CrossRef] [PubMed]

Höppener, C.

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801–210804 (2002).
[CrossRef] [PubMed]

Katayama, K.

Keilmann, F.

H. F. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030–5032 (2002).
[CrossRef]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Kim, J. H.

J. H. Kim and K.-B. Song, “Recent progress of nano-technology with NSOM,” Micron 38(4), 409–426 (2007).
[CrossRef]

Kobayashi, T.

Kriele, A.

H. F. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030–5032 (2002).
[CrossRef]

Kurihara, K.

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables,” J. Phys. A: Math. Theor. 41(29), 295401 (2008).
[CrossRef]

K. Kurihara, A. Otomo, A. Syouji, J. Takahara, K. Suzuki, and S. Yokoyama, “Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach,” J. Phys. A: Math. Theor. 40(41), 12479–12503 (2007).
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Lu, N.

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801–210804 (2002).
[CrossRef] [PubMed]

Maas, H. J.

H. J. Maas, J. Heimel, H. Fuchs, U. C. Fischer, J. C. Weeber, and A. Dereux, “Photonic nanopatterns of gold nanostructures indicate the excitation of surface plasmon modes of a wavelength of 50-100 nm by scanning near-field optical microscopy,” J. Microsc. 209(Pt 3), 241–248 (2003).
[CrossRef] [PubMed]

H. J. Maas, A. Naber, H. Fuchs, U. C. Fischer, J. C. Weeber, and A. Dereux, “Imaging of photonic nanopatterns by scanning near-field optical microscopy,” J. Opt. Soc. Am. B 19(6), 1295–1300 (2002).
[CrossRef]

Maas, H.-J.

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801–210804 (2002).
[CrossRef] [PubMed]

Maier, S. A.

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Margaryan, N. L.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785 (2000).
[CrossRef]

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
[CrossRef]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Molenda, D.

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801–210804 (2002).
[CrossRef] [PubMed]

Morimoto, A.

Müller-Wiegand, M.

E. Oesterschulze, G. Georgiev, M. Müller-Wiegand, A. Vollkopf, and O. Rudow, “Transmission line probe based on a bow-tie antenna,” J. Microsc. 202(Pt 1), 39–44 (2001).
[CrossRef] [PubMed]

Naber, A.

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801–210804 (2002).
[CrossRef] [PubMed]

H. J. Maas, A. Naber, H. Fuchs, U. C. Fischer, J. C. Weeber, and A. Dereux, “Imaging of photonic nanopatterns by scanning near-field optical microscopy,” J. Opt. Soc. Am. B 19(6), 1295–1300 (2002).
[CrossRef]

Nerkararyan, K. V.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
[CrossRef]

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785 (2000).
[CrossRef]

K. V. Nerkararyan, “Superfocusing of a surface polariton in a wedge-like structure,” Phys. Lett. A 237(1-2), 103–105 (1997).
[CrossRef]

Nerkararyan, Kh. V.

A. E. Babayan and Kh. V. Nerkararyan, “The strong localization of surface plasmon polariton on a metal-coated tip of optical fiber,” Ultramicroscopy 107(12), 1136–1140 (2007).
[CrossRef] [PubMed]

Oesterschulze, E.

E. Oesterschulze, G. Georgiev, M. Müller-Wiegand, A. Vollkopf, and O. Rudow, “Transmission line probe based on a bow-tie antenna,” J. Microsc. 202(Pt 1), 39–44 (2001).
[CrossRef] [PubMed]

Otomo, A.

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables,” J. Phys. A: Math. Theor. 41(29), 295401 (2008).
[CrossRef]

K. Kurihara, A. Otomo, A. Syouji, J. Takahara, K. Suzuki, and S. Yokoyama, “Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach,” J. Phys. A: Math. Theor. 40(41), 12479–12503 (2007).
[CrossRef]

Pile, D. F. P.

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[CrossRef]

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Rudow, O.

E. Oesterschulze, G. Georgiev, M. Müller-Wiegand, A. Vollkopf, and O. Rudow, “Transmission line probe based on a bow-tie antenna,” J. Microsc. 202(Pt 1), 39–44 (2001).
[CrossRef] [PubMed]

Ruppin, R.

R. Ruppin, “Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip,” Phys. Lett. A 340(1-4), 299–302 (2005).
[CrossRef]

Salter, D.

Song, K.-B.

J. H. Kim and K.-B. Song, “Recent progress of nano-technology with NSOM,” Micron 38(4), 409–426 (2007).
[CrossRef]

Stockman, M. I.

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rod,” J. Appl. Phys. 104(3), 034311 (2008).
[CrossRef]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[CrossRef] [PubMed]

Sugiyama, T.

Suzuki, K.

K. Kurihara, A. Otomo, A. Syouji, J. Takahara, K. Suzuki, and S. Yokoyama, “Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach,” J. Phys. A: Math. Theor. 40(41), 12479–12503 (2007).
[CrossRef]

Syouji, A.

K. Kurihara, A. Otomo, A. Syouji, J. Takahara, K. Suzuki, and S. Yokoyama, “Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach,” J. Phys. A: Math. Theor. 40(41), 12479–12503 (2007).
[CrossRef]

Szoplik, T.

Takahara, J.

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables,” J. Phys. A: Math. Theor. 41(29), 295401 (2008).
[CrossRef]

K. Kurihara, A. Otomo, A. Syouji, J. Takahara, K. Suzuki, and S. Yokoyama, “Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach,” J. Phys. A: Math. Theor. 40(41), 12479–12503 (2007).
[CrossRef]

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997).
[CrossRef] [PubMed]

Taki, H.

Tanaka, K.

K. Tanaka, M. Tanaka, and K. Katayama, “Simulation of near-field scanning optical microscopy using a plasmonic gap probe,” Opt. Express 14(22), 10603–10613 (2006).
[CrossRef] [PubMed]

K. Tanaka, M. Tanaka, and T. Sugiyama, “Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons,” Opt. Express 14(2), 832–846 (2006).
[CrossRef] [PubMed]

K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210(Pt 3), 294–300 (2003).
[CrossRef] [PubMed]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
[CrossRef]

Tanaka, M.

K. Tanaka, M. Tanaka, and T. Sugiyama, “Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons,” Opt. Express 14(2), 832–846 (2006).
[CrossRef] [PubMed]

K. Tanaka, M. Tanaka, and K. Katayama, “Simulation of near-field scanning optical microscopy using a plasmonic gap probe,” Opt. Express 14(22), 10603–10613 (2006).
[CrossRef] [PubMed]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
[CrossRef]

K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210(Pt 3), 294–300 (2003).
[CrossRef] [PubMed]

Vogel, M. W.

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rod,” J. Appl. Phys. 104(3), 034311 (2008).
[CrossRef]

M. W. Vogel and D. K. Gramotnev, “Optimization of plasmon nano-focusing in tapered metal rods,” J. Nanophotonics 2, 1–17 (2008).
[CrossRef]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).
[CrossRef]

M. W. Vogel and K. Dmitri, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363(5-6), 507–511 (2007).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Vollkopf, A.

E. Oesterschulze, G. Georgiev, M. Müller-Wiegand, A. Vollkopf, and O. Rudow, “Transmission line probe based on a bow-tie antenna,” J. Microsc. 202(Pt 1), 39–44 (2001).
[CrossRef] [PubMed]

Wang, J. K.

A. V. Goncharenko, H. C. Chang, and J. K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107(2-3), 151–157 (2007).
[CrossRef]

Weeber, J. C.

H. J. Maas, J. Heimel, H. Fuchs, U. C. Fischer, J. C. Weeber, and A. Dereux, “Photonic nanopatterns of gold nanostructures indicate the excitation of surface plasmon modes of a wavelength of 50-100 nm by scanning near-field optical microscopy,” J. Microsc. 209(Pt 3), 241–248 (2003).
[CrossRef] [PubMed]

H. J. Maas, A. Naber, H. Fuchs, U. C. Fischer, J. C. Weeber, and A. Dereux, “Imaging of photonic nanopatterns by scanning near-field optical microscopy,” J. Opt. Soc. Am. B 19(6), 1295–1300 (2002).
[CrossRef]

Wróbel, P.

Yamagishi, S.

Yamamoto, K.

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables,” J. Phys. A: Math. Theor. 41(29), 295401 (2008).
[CrossRef]

Yokoyama, S.

K. Kurihara, A. Otomo, A. Syouji, J. Takahara, K. Suzuki, and S. Yokoyama, “Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach,” J. Phys. A: Math. Theor. 40(41), 12479–12503 (2007).
[CrossRef]

Zhan, Q.

Zhang, X.

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).
[CrossRef]

Adv. Mater. (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Appl. Phys. Lett. (3)

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[CrossRef]

H. F. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030–5032 (2002).
[CrossRef]

J. Appl. Phys. (3)

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rod,” J. Appl. Phys. 104(3), 034311 (2008).
[CrossRef]

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785 (2000).
[CrossRef]

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
[CrossRef]

J. Microsc. (3)

K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210(Pt 3), 294–300 (2003).
[CrossRef] [PubMed]

E. Oesterschulze, G. Georgiev, M. Müller-Wiegand, A. Vollkopf, and O. Rudow, “Transmission line probe based on a bow-tie antenna,” J. Microsc. 202(Pt 1), 39–44 (2001).
[CrossRef] [PubMed]

H. J. Maas, J. Heimel, H. Fuchs, U. C. Fischer, J. C. Weeber, and A. Dereux, “Photonic nanopatterns of gold nanostructures indicate the excitation of surface plasmon modes of a wavelength of 50-100 nm by scanning near-field optical microscopy,” J. Microsc. 209(Pt 3), 241–248 (2003).
[CrossRef] [PubMed]

J. Nanophotonics (1)

M. W. Vogel and D. K. Gramotnev, “Optimization of plasmon nano-focusing in tapered metal rods,” J. Nanophotonics 2, 1–17 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. A: Math. Theor. (2)

K. Kurihara, A. Otomo, A. Syouji, J. Takahara, K. Suzuki, and S. Yokoyama, “Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach,” J. Phys. A: Math. Theor. 40(41), 12479–12503 (2007).
[CrossRef]

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables,” J. Phys. A: Math. Theor. 41(29), 295401 (2008).
[CrossRef]

Micron (1)

J. H. Kim and K.-B. Song, “Recent progress of nano-technology with NSOM,” Micron 38(4), 409–426 (2007).
[CrossRef]

Nature (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Lett. A (3)

K. V. Nerkararyan, “Superfocusing of a surface polariton in a wedge-like structure,” Phys. Lett. A 237(1-2), 103–105 (1997).
[CrossRef]

R. Ruppin, “Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip,” Phys. Lett. A 340(1-4), 299–302 (2005).
[CrossRef]

M. W. Vogel and K. Dmitri, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363(5-6), 507–511 (2007).
[CrossRef]

Phys. Rev. A (1)

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
[CrossRef]

Phys. Rev. B (2)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[CrossRef]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[CrossRef] [PubMed]

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801–210804 (2002).
[CrossRef] [PubMed]

Ultramicroscopy (2)

A. E. Babayan and Kh. V. Nerkararyan, “The strong localization of surface plasmon polariton on a metal-coated tip of optical fiber,” Ultramicroscopy 107(12), 1136–1140 (2007).
[CrossRef] [PubMed]

A. V. Goncharenko, H. C. Chang, and J. K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107(2-3), 151–157 (2007).
[CrossRef]

Other (8)

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to-edge plasmon modes,” Applied Physics B: Lasers and Optics 93, 0946–2171 (Print) 1432–0649 (Online) (2008).

N. A. Janunts, K. S. Baghdasaryan, Kh. V. Nerkararyan and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Comm. 253, (2005).

N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2, 1557-1955 (Print) 1557−1963 (Online) (2007).

M. Ohtsu, and H. Hori, “Near-Field Nano-Optics: From Basic Principles to Nano-Fabrication and Nano-Photonics,” Plenum Pub. Corp. (1999).

V. M. Shalaev and S. Kawata ed., “Nanophotonics with Surface Plasmons,” Elsevier Science Ltd. (2007).

M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, “Principles of Nanophotonics,” Chapman & Hall (2008).

S. I. Bozhevolnyi, “Plasmonic Nanowaveguide and Circuits”, World Scientific, 2008.

S. Xiaolei, L. Hesselink, and R. L. Thornton, “Greatly enhanced power throughput from a “C”-shaped metallic nano-aperture for near field optical applications”, Quantum Electronics and Laser Science Conference, 2002. Technical Digest. 40.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Geometry of a pyramidal structure fabricated on an aperture in a metallic screen. The base of the structure has dimensions Bx × By and the height of the structure is h. A rectangular aperture with dimensions ax × ay is created in the metallic screen placed on the x-y plane. The permittivities of the surrounding free space, screen and pyramidal structure are given by ε 0, ε 1 and ε 2, respectively. A Gaussian beam (indicated by the red arrow) is normally incident on the screen from the negative z direction and its the electric field polarization at z = 0 (indicated by the blue arrow) is assumed to be parallel to the x-axis. The beam axis along the z-axis.

Fig. 2
Fig. 2

Distributions of electric field component in the x-z plane Im[Ex (x, 0, z)] are shown in (a) and (c), and those on a plane parallel to the y-z plane Im[Ex (δ/2, 0, z)] are shown in (b) and (d). The results of (a) and (b) are based on a discretized cube of δ (10 nm) and (c) and (d) are based on a discretized cube of δ/2 in the application of MoM. In all cases, the whole structure is composed of tiny cubes of δ. The intensity is normalized by the incident intensity.

Fig. 3
Fig. 3

Distributions of electric field component on the plane parallel to the x-y plane (i.e., Im[Ex (x, y, given)] and Im[Ey (x, y, given)]). The capital letters (A)−(D) shown in the eight figures indicate the planes whose positions are illustrated in Fig. 2(c).

Fig. 4
Fig. 4

Distributions of total optical intensity along the line parallel to the z-axis |E(δ/4, 0, z)|2 with the dissipation of the permittivity as a parameter. The value of ε220 = −13.2−j1.08 is the real values of gold at wavelength λ = 633 nm.

Fig. 5
Fig. 5

Specific shapes of the four layers of the probe tip, which consists of cubes whose size is given by δ. In the numerical calculation, each cube is subdivided into eight smaller cubes whose size is δ/2.

Fig. 6
Fig. 6

Distributions of electric field components |Ex |2 in (a)−(c), |Ey |2 in (d)−(f) and |Ez |2 in (g)−(i) in the three planes located at z = hδ/2, z = h+δ/2 and z = h+δ. The dimensions of the x-y plane is 200 nm × 200 nm.

Fig. 7
Fig. 7

Distributions of electric field vector Im( E ) near the cube on the tip whose size is given by δ (a) on the plane parallel to the y-z plane (x=-δ/4) and (b) on the x-z plane. White square shows the cube on the tip. Directions of the x-, y- and z-axis are also shown.

Fig. 8
Fig. 8

Dependences of the intensity of radial component |ER |2 on the distance R (=[(x+δ/2)2 + y 2 + (zh+δ/2)2]1/2) in the spherical coordinate systems (R, Φ, Θ) whose origin is placed at cube center on the tip shown in the inset. The black dotted line represents the dependence R −3.

Fig. 9
Fig. 9

Intensity distributions of the dominant electric field component just above the tip |Ez (x, y, h+δ/2)|2 for various shapes of the tip. Specific tip structures made from cubes of size δ are shown to the right of each distribution. The dimensions of the x-y plane is 200 nm × 200 nm.

Fig. 10
Fig. 10

Dependence of maximum intensity of the field component just above the tip |Ez (x, y, h+δ/2)|2 (solid circles) and normalized transmitted power (open circles) on the width of the rectangular aperture.

Metrics