Abstract

We present a method to study current paths through quantum cascade lasers (QCLs). The temperature dependence of the current is measured at a fixed voltage. At low temperatures we find activation energies that correspond to the energy difference between the injector ground state and the upper laser level. At higher temperatures additional paths with larger activation energies are found. Application of this method to high performance QCLs based on strained InGaAs/InAlAs quantum wells and barriers with different band-offsets allows us to identify individual parasitic current paths through the devices. The results give insight into the transport properties of quantum cascade lasers thus providing a useful tool for device optimization.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
    [CrossRef]
  2. Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
    [CrossRef]
  3. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
    [CrossRef]
  4. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. K. N. Patel, C. Pflügl, L. Diehl, and F. Capasso, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. Appl. Phys. Lett. 95, 151112 (2009).
  5. A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
    [CrossRef] [PubMed]
  6. J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, “Short wavelength (lambda ~ 3.4 µm) quantum cascade laser based on strained compensated InGaAs/AlInAs,” Appl. Phys. Lett. 72(6), 680 (1998).
    [CrossRef]
  7. M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, G. Fedorov, and D. Smirnov, “Intervalley carrier transfer in short-wavelength InP-based quantum-cascade laser,” Appl. Phys. Lett. 93(7), 071109 (2008).
    [CrossRef]
  8. W. T. Masselink, Mykhaylo P. Semtsiv, S. Dressler, M. Ziegler, M. Wienold, “Physics, growth, and performance of (In,Ga)As–AlP/InP quantum-cascade lasers emitting at l < 4 μm,” Phys. stat. sol. (b) 244, 8, 2906 (2007).
  9. T. Unuma, T. Takahashi, T. Noda, M. Yoshita, H. Sakaki, M. Baba, and H. Akiyama, “Effects of interface roughness and phonon scattering on intersubband absorption linewidth in a GaAs quantum well,” Appl. Phys. Lett. 78(22), 3448 (2001).
    [CrossRef]
  10. J. C. Shin, M. D'Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
    [CrossRef]
  11. C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B 39(3), 1871–1883 (1989).
    [CrossRef]
  12. H. Choi, L. Diehl, Z.-K. Wu, M. Giovannini, J. Faist, F. Capasso, and T. B. Norris, “Gain recovery dynamics and photon-driven transport in quantum cascade lasers,” Phys. Rev. Lett. 100(16), 167401 (2008).
    [CrossRef] [PubMed]
  13. R. F. Kazarinov and R. A. Suris, “Electric and electromagnetic properties of semiconductors with superlattice,” Sov. Phys. Semicond. 6, 120 (1972).
  14. C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant Tunneling in Quantum Cascade Lasers,” IEEE J. Quantum Electron. 34(9), 1722–1729 (1998).
    [CrossRef]
  15. R. Terazzi, T. Gresch, A. Wittmann, and J. Faist, “Sequential resonant tunneling in quantum cascade lasers,” Phys. Rev. B 78(15), 155328 (2008).
    [CrossRef]
  16. A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
    [CrossRef]
  17. S. Tsujino, A. Borak, E. Müller, M. Scheinert, C. V. Falub, H. Sigg, D. Grützemacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAs/AlInAs quantum-cascade structures,” Appl. Phys. Lett. 86(6), 062113 (2005).
    [CrossRef]
  18. R. Ferreira and G. Bastard, “Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures,” Phys. Rev. B 40(2), 1074–1086 (1989).
    [CrossRef]
  19. G. Molis, A. Krotkus, and V. Vaičaitis, “Intervalley separation in the conduction band of InGaAs measured by terahertz excitation spectroscopy,” Appl. Phys. Lett. 94(9), 091104 (2009).
    [CrossRef]

2009 (4)

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. K. N. Patel, C. Pflügl, L. Diehl, and F. Capasso, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. Appl. Phys. Lett. 95, 151112 (2009).

J. C. Shin, M. D'Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
[CrossRef]

G. Molis, A. Krotkus, and V. Vaičaitis, “Intervalley separation in the conduction band of InGaAs measured by terahertz excitation spectroscopy,” Appl. Phys. Lett. 94(9), 091104 (2009).
[CrossRef]

2008 (5)

H. Choi, L. Diehl, Z.-K. Wu, M. Giovannini, J. Faist, F. Capasso, and T. B. Norris, “Gain recovery dynamics and photon-driven transport in quantum cascade lasers,” Phys. Rev. Lett. 100(16), 167401 (2008).
[CrossRef] [PubMed]

R. Terazzi, T. Gresch, A. Wittmann, and J. Faist, “Sequential resonant tunneling in quantum cascade lasers,” Phys. Rev. B 78(15), 155328 (2008).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[CrossRef]

M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, G. Fedorov, and D. Smirnov, “Intervalley carrier transfer in short-wavelength InP-based quantum-cascade laser,” Appl. Phys. Lett. 93(7), 071109 (2008).
[CrossRef]

2006 (2)

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[CrossRef]

2005 (1)

S. Tsujino, A. Borak, E. Müller, M. Scheinert, C. V. Falub, H. Sigg, D. Grützemacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAs/AlInAs quantum-cascade structures,” Appl. Phys. Lett. 86(6), 062113 (2005).
[CrossRef]

2001 (1)

T. Unuma, T. Takahashi, T. Noda, M. Yoshita, H. Sakaki, M. Baba, and H. Akiyama, “Effects of interface roughness and phonon scattering on intersubband absorption linewidth in a GaAs quantum well,” Appl. Phys. Lett. 78(22), 3448 (2001).
[CrossRef]

1998 (2)

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, “Short wavelength (lambda ~ 3.4 µm) quantum cascade laser based on strained compensated InGaAs/AlInAs,” Appl. Phys. Lett. 72(6), 680 (1998).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant Tunneling in Quantum Cascade Lasers,” IEEE J. Quantum Electron. 34(9), 1722–1729 (1998).
[CrossRef]

1989 (2)

R. Ferreira and G. Bastard, “Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures,” Phys. Rev. B 40(2), 1074–1086 (1989).
[CrossRef]

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B 39(3), 1871–1883 (1989).
[CrossRef]

1972 (1)

R. F. Kazarinov and R. A. Suris, “Electric and electromagnetic properties of semiconductors with superlattice,” Sov. Phys. Semicond. 6, 120 (1972).

Akiyama, H.

T. Unuma, T. Takahashi, T. Noda, M. Yoshita, H. Sakaki, M. Baba, and H. Akiyama, “Effects of interface roughness and phonon scattering on intersubband absorption linewidth in a GaAs quantum well,” Appl. Phys. Lett. 78(22), 3448 (2001).
[CrossRef]

Baba, M.

T. Unuma, T. Takahashi, T. Noda, M. Yoshita, H. Sakaki, M. Baba, and H. Akiyama, “Effects of interface roughness and phonon scattering on intersubband absorption linewidth in a GaAs quantum well,” Appl. Phys. Lett. 78(22), 3448 (2001).
[CrossRef]

Bai, Y.

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[CrossRef]

Bastard, G.

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[CrossRef]

R. Ferreira and G. Bastard, “Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures,” Phys. Rev. B 40(2), 1074–1086 (1989).
[CrossRef]

Borak, A.

S. Tsujino, A. Borak, E. Müller, M. Scheinert, C. V. Falub, H. Sigg, D. Grützemacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAs/AlInAs quantum-cascade structures,” Appl. Phys. Lett. 86(6), 062113 (2005).
[CrossRef]

Botez, D.

J. C. Shin, M. D'Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
[CrossRef]

Capasso, F.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. K. N. Patel, C. Pflügl, L. Diehl, and F. Capasso, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. Appl. Phys. Lett. 95, 151112 (2009).

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

H. Choi, L. Diehl, Z.-K. Wu, M. Giovannini, J. Faist, F. Capasso, and T. B. Norris, “Gain recovery dynamics and photon-driven transport in quantum cascade lasers,” Phys. Rev. Lett. 100(16), 167401 (2008).
[CrossRef] [PubMed]

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant Tunneling in Quantum Cascade Lasers,” IEEE J. Quantum Electron. 34(9), 1722–1729 (1998).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, “Short wavelength (lambda ~ 3.4 µm) quantum cascade laser based on strained compensated InGaAs/AlInAs,” Appl. Phys. Lett. 72(6), 680 (1998).
[CrossRef]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, “Short wavelength (lambda ~ 3.4 µm) quantum cascade laser based on strained compensated InGaAs/AlInAs,” Appl. Phys. Lett. 72(6), 680 (1998).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant Tunneling in Quantum Cascade Lasers,” IEEE J. Quantum Electron. 34(9), 1722–1729 (1998).
[CrossRef]

Choi, H.

H. Choi, L. Diehl, Z.-K. Wu, M. Giovannini, J. Faist, F. Capasso, and T. B. Norris, “Gain recovery dynamics and photon-driven transport in quantum cascade lasers,” Phys. Rev. Lett. 100(16), 167401 (2008).
[CrossRef] [PubMed]

Chu, S.-N. G.

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, “Short wavelength (lambda ~ 3.4 µm) quantum cascade laser based on strained compensated InGaAs/AlInAs,” Appl. Phys. Lett. 72(6), 680 (1998).
[CrossRef]

Darvish, S. R.

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[CrossRef]

Diehl, L.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. K. N. Patel, C. Pflügl, L. Diehl, and F. Capasso, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. Appl. Phys. Lett. 95, 151112 (2009).

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

H. Choi, L. Diehl, Z.-K. Wu, M. Giovannini, J. Faist, F. Capasso, and T. B. Norris, “Gain recovery dynamics and photon-driven transport in quantum cascade lasers,” Phys. Rev. Lett. 100(16), 167401 (2008).
[CrossRef] [PubMed]

Dressler, S.

M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, G. Fedorov, and D. Smirnov, “Intervalley carrier transfer in short-wavelength InP-based quantum-cascade laser,” Appl. Phys. Lett. 93(7), 071109 (2008).
[CrossRef]

D'Souza, M.

J. C. Shin, M. D'Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
[CrossRef]

Faist, J.

H. Choi, L. Diehl, Z.-K. Wu, M. Giovannini, J. Faist, F. Capasso, and T. B. Norris, “Gain recovery dynamics and photon-driven transport in quantum cascade lasers,” Phys. Rev. Lett. 100(16), 167401 (2008).
[CrossRef] [PubMed]

R. Terazzi, T. Gresch, A. Wittmann, and J. Faist, “Sequential resonant tunneling in quantum cascade lasers,” Phys. Rev. B 78(15), 155328 (2008).
[CrossRef]

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[CrossRef]

S. Tsujino, A. Borak, E. Müller, M. Scheinert, C. V. Falub, H. Sigg, D. Grützemacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAs/AlInAs quantum-cascade structures,” Appl. Phys. Lett. 86(6), 062113 (2005).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant Tunneling in Quantum Cascade Lasers,” IEEE J. Quantum Electron. 34(9), 1722–1729 (1998).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, “Short wavelength (lambda ~ 3.4 µm) quantum cascade laser based on strained compensated InGaAs/AlInAs,” Appl. Phys. Lett. 72(6), 680 (1998).
[CrossRef]

Falub, C. V.

S. Tsujino, A. Borak, E. Müller, M. Scheinert, C. V. Falub, H. Sigg, D. Grützemacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAs/AlInAs quantum-cascade structures,” Appl. Phys. Lett. 86(6), 062113 (2005).
[CrossRef]

Fan, J. Y.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Fedorov, G.

M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, G. Fedorov, and D. Smirnov, “Intervalley carrier transfer in short-wavelength InP-based quantum-cascade laser,” Appl. Phys. Lett. 93(7), 071109 (2008).
[CrossRef]

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[CrossRef]

Ferreira, R.

R. Ferreira and G. Bastard, “Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures,” Phys. Rev. B 40(2), 1074–1086 (1989).
[CrossRef]

Giovannini, M.

H. Choi, L. Diehl, Z.-K. Wu, M. Giovannini, J. Faist, F. Capasso, and T. B. Norris, “Gain recovery dynamics and photon-driven transport in quantum cascade lasers,” Phys. Rev. Lett. 100(16), 167401 (2008).
[CrossRef] [PubMed]

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[CrossRef]

S. Tsujino, A. Borak, E. Müller, M. Scheinert, C. V. Falub, H. Sigg, D. Grützemacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAs/AlInAs quantum-cascade structures,” Appl. Phys. Lett. 86(6), 062113 (2005).
[CrossRef]

Go, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. K. N. Patel, C. Pflügl, L. Diehl, and F. Capasso, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. Appl. Phys. Lett. 95, 151112 (2009).

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Gresch, T.

R. Terazzi, T. Gresch, A. Wittmann, and J. Faist, “Sequential resonant tunneling in quantum cascade lasers,” Phys. Rev. B 78(15), 155328 (2008).
[CrossRef]

Grützemacher, D.

S. Tsujino, A. Borak, E. Müller, M. Scheinert, C. V. Falub, H. Sigg, D. Grützemacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAs/AlInAs quantum-cascade structures,” Appl. Phys. Lett. 86(6), 062113 (2005).
[CrossRef]

Hutchinson, A. L.

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant Tunneling in Quantum Cascade Lasers,” IEEE J. Quantum Electron. 34(9), 1722–1729 (1998).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, “Short wavelength (lambda ~ 3.4 µm) quantum cascade laser based on strained compensated InGaAs/AlInAs,” Appl. Phys. Lett. 72(6), 680 (1998).
[CrossRef]

Kazarinov, R. F.

R. F. Kazarinov and R. A. Suris, “Electric and electromagnetic properties of semiconductors with superlattice,” Sov. Phys. Semicond. 6, 120 (1972).

Kirch, J.

J. C. Shin, M. D'Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
[CrossRef]

Krotkus, A.

G. Molis, A. Krotkus, and V. Vaičaitis, “Intervalley separation in the conduction band of InGaAs measured by terahertz excitation spectroscopy,” Appl. Phys. Lett. 94(9), 091104 (2009).
[CrossRef]

Kumar, C.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Leuliet, A.

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[CrossRef]

Liu, Z.

J. C. Shin, M. D'Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
[CrossRef]

Lyakh, A.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. K. N. Patel, C. Pflügl, L. Diehl, and F. Capasso, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. Appl. Phys. Lett. 95, 151112 (2009).

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Masselink, W. T.

M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, G. Fedorov, and D. Smirnov, “Intervalley carrier transfer in short-wavelength InP-based quantum-cascade laser,” Appl. Phys. Lett. 93(7), 071109 (2008).
[CrossRef]

Maulini, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. K. N. Patel, C. Pflügl, L. Diehl, and F. Capasso, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. Appl. Phys. Lett. 95, 151112 (2009).

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Mawst, L. J.

J. C. Shin, M. D'Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
[CrossRef]

Meyer, J. R.

J. C. Shin, M. D'Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
[CrossRef]

Molis, G.

G. Molis, A. Krotkus, and V. Vaičaitis, “Intervalley separation in the conduction band of InGaAs measured by terahertz excitation spectroscopy,” Appl. Phys. Lett. 94(9), 091104 (2009).
[CrossRef]

Müller, E.

S. Tsujino, A. Borak, E. Müller, M. Scheinert, C. V. Falub, H. Sigg, D. Grützemacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAs/AlInAs quantum-cascade structures,” Appl. Phys. Lett. 86(6), 062113 (2005).
[CrossRef]

Noda, T.

T. Unuma, T. Takahashi, T. Noda, M. Yoshita, H. Sakaki, M. Baba, and H. Akiyama, “Effects of interface roughness and phonon scattering on intersubband absorption linewidth in a GaAs quantum well,” Appl. Phys. Lett. 78(22), 3448 (2001).
[CrossRef]

Norris, T. B.

H. Choi, L. Diehl, Z.-K. Wu, M. Giovannini, J. Faist, F. Capasso, and T. B. Norris, “Gain recovery dynamics and photon-driven transport in quantum cascade lasers,” Phys. Rev. Lett. 100(16), 167401 (2008).
[CrossRef] [PubMed]

Patel, C. K. N.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. K. N. Patel, C. Pflügl, L. Diehl, and F. Capasso, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. Appl. Phys. Lett. 95, 151112 (2009).

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Patel, N.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Pflügl, C.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. K. N. Patel, C. Pflügl, L. Diehl, and F. Capasso, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. Appl. Phys. Lett. 95, 151112 (2009).

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Pushkarsky, M.

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Razeghi, M.

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[CrossRef]

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Sakaki, H.

T. Unuma, T. Takahashi, T. Noda, M. Yoshita, H. Sakaki, M. Baba, and H. Akiyama, “Effects of interface roughness and phonon scattering on intersubband absorption linewidth in a GaAs quantum well,” Appl. Phys. Lett. 78(22), 3448 (2001).
[CrossRef]

Scheinert, M.

S. Tsujino, A. Borak, E. Müller, M. Scheinert, C. V. Falub, H. Sigg, D. Grützemacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAs/AlInAs quantum-cascade structures,” Appl. Phys. Lett. 86(6), 062113 (2005).
[CrossRef]

Semtsiv, M. P.

M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, G. Fedorov, and D. Smirnov, “Intervalley carrier transfer in short-wavelength InP-based quantum-cascade laser,” Appl. Phys. Lett. 93(7), 071109 (2008).
[CrossRef]

Shin, J. C.

J. C. Shin, M. D'Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
[CrossRef]

Sigg, H.

S. Tsujino, A. Borak, E. Müller, M. Scheinert, C. V. Falub, H. Sigg, D. Grützemacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAs/AlInAs quantum-cascade structures,” Appl. Phys. Lett. 86(6), 062113 (2005).
[CrossRef]

Sirtori, C.

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant Tunneling in Quantum Cascade Lasers,” IEEE J. Quantum Electron. 34(9), 1722–1729 (1998).
[CrossRef]

Sivco, D. L.

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant Tunneling in Quantum Cascade Lasers,” IEEE J. Quantum Electron. 34(9), 1722–1729 (1998).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, “Short wavelength (lambda ~ 3.4 µm) quantum cascade laser based on strained compensated InGaAs/AlInAs,” Appl. Phys. Lett. 72(6), 680 (1998).
[CrossRef]

Slivken, S.

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[CrossRef]

Smirnov, D.

M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, G. Fedorov, and D. Smirnov, “Intervalley carrier transfer in short-wavelength InP-based quantum-cascade laser,” Appl. Phys. Lett. 93(7), 071109 (2008).
[CrossRef]

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[CrossRef]

Suris, R. A.

R. F. Kazarinov and R. A. Suris, “Electric and electromagnetic properties of semiconductors with superlattice,” Sov. Phys. Semicond. 6, 120 (1972).

Takahashi, T.

T. Unuma, T. Takahashi, T. Noda, M. Yoshita, H. Sakaki, M. Baba, and H. Akiyama, “Effects of interface roughness and phonon scattering on intersubband absorption linewidth in a GaAs quantum well,” Appl. Phys. Lett. 78(22), 3448 (2001).
[CrossRef]

Tanbun-Ek, T.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Terazzi, R.

R. Terazzi, T. Gresch, A. Wittmann, and J. Faist, “Sequential resonant tunneling in quantum cascade lasers,” Phys. Rev. B 78(15), 155328 (2008).
[CrossRef]

Tsekoun, A.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. K. N. Patel, C. Pflügl, L. Diehl, and F. Capasso, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. Appl. Phys. Lett. 95, 151112 (2009).

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Tsujino, S.

S. Tsujino, A. Borak, E. Müller, M. Scheinert, C. V. Falub, H. Sigg, D. Grützemacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAs/AlInAs quantum-cascade structures,” Appl. Phys. Lett. 86(6), 062113 (2005).
[CrossRef]

Unuma, T.

T. Unuma, T. Takahashi, T. Noda, M. Yoshita, H. Sakaki, M. Baba, and H. Akiyama, “Effects of interface roughness and phonon scattering on intersubband absorption linewidth in a GaAs quantum well,” Appl. Phys. Lett. 78(22), 3448 (2001).
[CrossRef]

Vaicaitis, V.

G. Molis, A. Krotkus, and V. Vaičaitis, “Intervalley separation in the conduction band of InGaAs measured by terahertz excitation spectroscopy,” Appl. Phys. Lett. 94(9), 091104 (2009).
[CrossRef]

Van de Walle, C. G.

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B 39(3), 1871–1883 (1989).
[CrossRef]

Vasanelli, A.

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[CrossRef]

Vinter, B.

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[CrossRef]

Vurgaftman, I.

J. C. Shin, M. D'Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
[CrossRef]

Wade, A.

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[CrossRef]

Wang, Q. J.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Wang, X. J.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Wienold, M.

M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, G. Fedorov, and D. Smirnov, “Intervalley carrier transfer in short-wavelength InP-based quantum-cascade laser,” Appl. Phys. Lett. 93(7), 071109 (2008).
[CrossRef]

Wittmann, A.

R. Terazzi, T. Gresch, A. Wittmann, and J. Faist, “Sequential resonant tunneling in quantum cascade lasers,” Phys. Rev. B 78(15), 155328 (2008).
[CrossRef]

Wu, Z.-K.

H. Choi, L. Diehl, Z.-K. Wu, M. Giovannini, J. Faist, F. Capasso, and T. B. Norris, “Gain recovery dynamics and photon-driven transport in quantum cascade lasers,” Phys. Rev. Lett. 100(16), 167401 (2008).
[CrossRef] [PubMed]

Yoshita, M.

T. Unuma, T. Takahashi, T. Noda, M. Yoshita, H. Sakaki, M. Baba, and H. Akiyama, “Effects of interface roughness and phonon scattering on intersubband absorption linewidth in a GaAs quantum well,” Appl. Phys. Lett. 78(22), 3448 (2001).
[CrossRef]

Appl. Phys. Lett. (10)

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

T. Unuma, T. Takahashi, T. Noda, M. Yoshita, H. Sakaki, M. Baba, and H. Akiyama, “Effects of interface roughness and phonon scattering on intersubband absorption linewidth in a GaAs quantum well,” Appl. Phys. Lett. 78(22), 3448 (2001).
[CrossRef]

J. C. Shin, M. D'Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 µm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, “Short wavelength (lambda ~ 3.4 µm) quantum cascade laser based on strained compensated InGaAs/AlInAs,” Appl. Phys. Lett. 72(6), 680 (1998).
[CrossRef]

M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, G. Fedorov, and D. Smirnov, “Intervalley carrier transfer in short-wavelength InP-based quantum-cascade laser,” Appl. Phys. Lett. 93(7), 071109 (2008).
[CrossRef]

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89(17), 172120 (2006).
[CrossRef]

S. Tsujino, A. Borak, E. Müller, M. Scheinert, C. V. Falub, H. Sigg, D. Grützemacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAs/AlInAs quantum-cascade structures,” Appl. Phys. Lett. 86(6), 062113 (2005).
[CrossRef]

G. Molis, A. Krotkus, and V. Vaičaitis, “Intervalley separation in the conduction band of InGaAs measured by terahertz excitation spectroscopy,” Appl. Phys. Lett. 94(9), 091104 (2009).
[CrossRef]

Appl. Phys. Lett. Appl. Phys. Lett. (1)

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. K. N. Patel, C. Pflügl, L. Diehl, and F. Capasso, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. Appl. Phys. Lett. 95, 151112 (2009).

IEEE J. Quantum Electron. (1)

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant Tunneling in Quantum Cascade Lasers,” IEEE J. Quantum Electron. 34(9), 1722–1729 (1998).
[CrossRef]

Phys. Rev. B (3)

R. Terazzi, T. Gresch, A. Wittmann, and J. Faist, “Sequential resonant tunneling in quantum cascade lasers,” Phys. Rev. B 78(15), 155328 (2008).
[CrossRef]

R. Ferreira and G. Bastard, “Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures,” Phys. Rev. B 40(2), 1074–1086 (1989).
[CrossRef]

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B 39(3), 1871–1883 (1989).
[CrossRef]

Phys. Rev. Lett. (1)

H. Choi, L. Diehl, Z.-K. Wu, M. Giovannini, J. Faist, F. Capasso, and T. B. Norris, “Gain recovery dynamics and photon-driven transport in quantum cascade lasers,” Phys. Rev. Lett. 100(16), 167401 (2008).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Sov. Phys. Semicond. (1)

R. F. Kazarinov and R. A. Suris, “Electric and electromagnetic properties of semiconductors with superlattice,” Sov. Phys. Semicond. 6, 120 (1972).

Other (1)

W. T. Masselink, Mykhaylo P. Semtsiv, S. Dressler, M. Ziegler, M. Wienold, “Physics, growth, and performance of (In,Ga)As–AlP/InP quantum-cascade lasers emitting at l < 4 μm,” Phys. stat. sol. (b) 244, 8, 2906 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram showing the current path from the injector ground state into the upper laser level and the transition from the upper laser level to the lower laser level (black arrows). Parasitic current paths to states above the upper laser level are indicated with red arrows. From these states the electrons can leak into the continuum as discussed in detail in the text.

Fig. 2
Fig. 2

a) Part of the conduction band diagram showing the most relevant active region wavefunctions (e. g. upper laser level state 4, states 5 & 6). In these calculations a conduction band-offset of 790meV (red lines) and 810meV (black lines) were used. b) shows a larger portion of the bandstructure (band-offset 790meV) including the injector and continuum states.

Fig. 3
Fig. 3

a) Light-current characteristics for representative ridge laser devices of structures S1 and S2. The devices were measured in pulsed operation (125ns, 80kHz) at room temperature. The power was measured using a calibrated thermopile detector in front of the lasers. b) Threshold current densities for ridge laser devices with similar specifications as the devices shown in a) at different temperatures. For these measurements, the devices were mounted in a cryostat and cooled with liquid nitrogen. The black line shows a fit for the characteristic temperature T0= 212T for device S1.

Fig. 4
Fig. 4

Current density versus temperature characteristics for structures a) S1 and b) S2 at different applied biases. The dots and triangles show the experimental data. The black lines are fits using Eq. (1) and including elastic and inelastic contributions to the upper state lifetime τ4. In a) the red lines are fits using a temperature independent upper state lifetime τ4 and the blue lines are fits using τ4 including only inelastic LO-phonon scattering. In b) the green lines include a second current path with an activation energy Δl according to Eq. (2).

Tables (1)

Tables Icon

Table 1 Activation energy a)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

J = 2 e | Ω | 2 τ 1 + Δ 2 4 τ 2 + | Ω | 2 τ 4 τ n i n j exp ( Δ k T ) ,
J = 2 e | Ω | 2 τ 1 + Δ 2 τ 2 + | Ω | 2 τ 4 τ n i n j exp ( Δ k T ) + c l ( T ) exp ( Δ l k T )

Metrics