Abstract

The metallic superlens typically shows two peaks in its transfer function related to the long- and the short-range surface plasmon polariton (SPP) modes. These peaks are necessary to amplify the evanescent waves compensating the exponential decays, but enhance the spatial frequencies disproportionally, resulting in strong sidelobes in the image. We propose to design the metallic superlens with close to the cutoff condition of the long-range SPP mode to balance the SPP amplification and the flatness of the transfer function, and thus eliminating the sidelobes in the image. The design experiments for the Al superlens at 193 nm with both the transfer-matrix approach and the numerical finite difference in time domain method are shown.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  2. V. A. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30(1), 75–77 (2005).
    [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  4. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
    [CrossRef] [PubMed]
  5. H. Qin, X. Li, and S. Shen, “Novel optical lithography using silver superlens,” Chin. Opt. Lett. 6(2), 149–151 (2008).
    [CrossRef]
  6. S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 23(11), 2383 (2006).
    [CrossRef]
  7. H. Raether, Surface Plasmons (Springer, Berlin, 1988).
  8. Z. Shi, V. Kochergin, and F. Wang, “193nm Superlens imaging structure for 20nm lithography node,” Opt. Express 17(14), 11309–11314 (2009).
    [CrossRef] [PubMed]
  9. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
    [CrossRef]
  10. M. N. Zervas, “Surface plasmon-polariton waves guided by thin metal films,” Opt. Lett. 16(10), 720–722 (1991).
    [CrossRef] [PubMed]
  11. F. Liu, Y. Rao, Y.-D. Huang, W. Zhang, and J.-D. Peng, “Abnormal cutoff of long-range surface plasmon polariton modes guided by thin metal films,” Chin. Phys. Lett. 24(12), 3462–3465 (2007).
    [CrossRef]
  12. C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt. 41(19), 3978–3987 (2002).
    [CrossRef] [PubMed]

2009 (1)

2008 (1)

2007 (1)

F. Liu, Y. Rao, Y.-D. Huang, W. Zhang, and J.-D. Peng, “Abnormal cutoff of long-range surface plasmon polariton modes guided by thin metal films,” Chin. Phys. Lett. 24(12), 3462–3465 (2007).
[CrossRef]

2006 (1)

2005 (3)

2002 (1)

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1991 (1)

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Blaikie, R. J.

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Durant, S.

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Huang, Y.-D.

F. Liu, Y. Rao, Y.-D. Huang, W. Zhang, and J.-D. Peng, “Abnormal cutoff of long-range surface plasmon polariton modes guided by thin metal films,” Chin. Phys. Lett. 24(12), 3462–3465 (2007).
[CrossRef]

Katsidis, C. C.

Kochergin, V.

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Li, X.

Liu, F.

F. Liu, Y. Rao, Y.-D. Huang, W. Zhang, and J.-D. Peng, “Abnormal cutoff of long-range surface plasmon polariton modes guided by thin metal films,” Chin. Phys. Lett. 24(12), 3462–3465 (2007).
[CrossRef]

Liu, Z.

Melville, D. O. S.

Narimanov, E. E.

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Peng, J.-D.

F. Liu, Y. Rao, Y.-D. Huang, W. Zhang, and J.-D. Peng, “Abnormal cutoff of long-range surface plasmon polariton modes guided by thin metal films,” Chin. Phys. Lett. 24(12), 3462–3465 (2007).
[CrossRef]

Podolskiy, V. A.

Qin, H.

Rao, Y.

F. Liu, Y. Rao, Y.-D. Huang, W. Zhang, and J.-D. Peng, “Abnormal cutoff of long-range surface plasmon polariton modes guided by thin metal films,” Chin. Phys. Lett. 24(12), 3462–3465 (2007).
[CrossRef]

Shen, S.

Shi, Z.

Siapkas, D. I.

Steele, J. M.

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Wang, F.

Zervas, M. N.

Zhang, W.

F. Liu, Y. Rao, Y.-D. Huang, W. Zhang, and J.-D. Peng, “Abnormal cutoff of long-range surface plasmon polariton modes guided by thin metal films,” Chin. Phys. Lett. 24(12), 3462–3465 (2007).
[CrossRef]

Zhang, X.

Appl. Opt. (1)

Chin. Opt. Lett. (1)

Chin. Phys. Lett. (1)

F. Liu, Y. Rao, Y.-D. Huang, W. Zhang, and J.-D. Peng, “Abnormal cutoff of long-range surface plasmon polariton modes guided by thin metal films,” Chin. Phys. Lett. 24(12), 3462–3465 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Other (1)

H. Raether, Surface Plasmons (Springer, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of the superlens

Fig. 2
Fig. 2

Metallic superlens transmission (a) and transfer function (b), for a 13 nm-thick Al superlens structures: ε 1 = ε 3 (green-dotted line) and close to the cutoff (thick black line). The transmission through free space over the same distances is plot in blue line.

Fig. 3
Fig. 3

Intensity profile for a 20 nm two-slit object (green) using a) symmetrical superlens (ε 1 = ε 3); b) superlens close to the cutoff and c) free space propagation.

Fig. 4
Fig. 4

Energy distribution in the image plane of a 20 nm two-slit object (green) by the index-matched superlens published in [8] (blue) and the superlens close-to-the-cutoff (red) calculated using FDTD.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ m = t 0 t d exp ( i k z m d ) 1 + r 0 r d exp ( 2 i k z m d ) ,
r 0 = ε m k z 1 ε 1 k z m ε m k z 1 + ε 1 k z m , r d = ε 3 k z m ε m k z 3 ε 3 k z m + ε m k z 3 , t 0 = 2 ε m k z 1 ε m k z 1 + ε 1 k z m , t d = 2 ε 3 k z m ε m k z 3 + ε 3 k z m ,
ρ m = r 0 + r d exp ( 2 i k z m d ) 1 + r 0 r d exp ( 2 i k z m d ) ,
r 0 / r d = exp ( 2 i k z m d ) ,

Metrics