Abstract

We propose a novel design for multi-wavelength arrays of vertical cavity surface-emitting lasers (VCSELs) using high-contrast gratings (HCGs) as top mirrors. A range of VCSEL cavity wavelengths in excess of 100 nm is predicted by modifying only the period and duty-cycle of the high-contrast gratings, while leaving the epitaxial layer thickness unchanged. VCSEL arrays fabricated with this novel design can easily accommodate the entire Er-doped fiber amplifier bandwidth with emission wavelengths defined solely by lithography with no restrictions in physical layout. Further, the entire process is identical to that of solitary VCSELs, facilitating cost-effective manufacturing.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Chang-Hasnain, M. Maeda, N. Stoffel, J. Harbison, L. Florez, and J. Jewell, “Surface Emitting Laser Arrays with Uniformly Separated Wavelengths,” Electron. Lett. 26(13), 940–941 (1990).
    [CrossRef]
  2. C. Chang-Hasnain, J. Harbison, C. Zah, M. Maeda, L. Florez, N. Stoffel, and T. P. Lee, “Multiple Wavelength Tunable Surface Emitting Laser Arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
    [CrossRef]
  3. L. Eng, K. Bacher, W. Yuen, J. Harris, and C. Chang-Hasnain, “Multiple Wavelength Vertical Cavity Laser Arrays on Patterned Substrates,” IEEE J. Quantum Electron. 1(2), 624–628 (1995).
    [CrossRef]
  4. F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, “Wavelength control of vertical cavity surface-emitting lasers by using nonplanar MOCVD,” IEEE Photon. Technol. Lett. 7(1), 10–12 (1995).
    [CrossRef]
  5. T. Wipiejewski, M. Peters, E. Hegblom, and L. Coldren, “Vertical-cavity surface-emitting laser diodes with post-growth wavelength adjustment,” IEEE Photon. Technol. Lett. 7(7), 727–729 (1995).
    [CrossRef]
  6. C. F. R. Mateus, M. C. Y. Huang, Y Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
    [CrossRef]
  7. M. Huang, Y. Zhou, and C. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
    [CrossRef]
  8. C. Chang-Hasnain, Y. Zhou, M. Huang, and C. Chase, “High-Contrast Grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869–878 (2009).
    [CrossRef]
  9. Y. Zhou, M. Moewe, J. Kern, M. C. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express 16(22), 17282–17287 (2008).
    [CrossRef] [PubMed]
  10. Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Opt. Express 17(3), 1508–1517 (2009).
    [CrossRef] [PubMed]
  11. V. Karagodsky, M. C. Y. Huang, and C. J. Chang-Hasnain, “Analytical Solution and Design Guideline for Highly Reflective Subwavelength Gratings,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO’08), San Jose, USA, Paper number JTuA128, (2008).
  12. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [CrossRef]
  13. W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55 µm VCSEL Arrays for High-Bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
    [CrossRef]
  14. A. Yariv, Optical Electronics in Modern Communications, (Oxford University Press, 1997).

2009 (2)

2008 (2)

Y. Zhou, M. Moewe, J. Kern, M. C. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express 16(22), 17282–17287 (2008).
[CrossRef] [PubMed]

W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55 µm VCSEL Arrays for High-Bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[CrossRef]

2007 (1)

M. Huang, Y. Zhou, and C. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[CrossRef]

2004 (1)

C. F. R. Mateus, M. C. Y. Huang, Y Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[CrossRef]

1995 (3)

L. Eng, K. Bacher, W. Yuen, J. Harris, and C. Chang-Hasnain, “Multiple Wavelength Vertical Cavity Laser Arrays on Patterned Substrates,” IEEE J. Quantum Electron. 1(2), 624–628 (1995).
[CrossRef]

F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, “Wavelength control of vertical cavity surface-emitting lasers by using nonplanar MOCVD,” IEEE Photon. Technol. Lett. 7(1), 10–12 (1995).
[CrossRef]

T. Wipiejewski, M. Peters, E. Hegblom, and L. Coldren, “Vertical-cavity surface-emitting laser diodes with post-growth wavelength adjustment,” IEEE Photon. Technol. Lett. 7(7), 727–729 (1995).
[CrossRef]

1991 (1)

C. Chang-Hasnain, J. Harbison, C. Zah, M. Maeda, L. Florez, N. Stoffel, and T. P. Lee, “Multiple Wavelength Tunable Surface Emitting Laser Arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[CrossRef]

1990 (1)

C. Chang-Hasnain, M. Maeda, N. Stoffel, J. Harbison, L. Florez, and J. Jewell, “Surface Emitting Laser Arrays with Uniformly Separated Wavelengths,” Electron. Lett. 26(13), 940–941 (1990).
[CrossRef]

1981 (1)

Amann, M. C.

W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55 µm VCSEL Arrays for High-Bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[CrossRef]

Bacher, K.

L. Eng, K. Bacher, W. Yuen, J. Harris, and C. Chang-Hasnain, “Multiple Wavelength Vertical Cavity Laser Arrays on Patterned Substrates,” IEEE J. Quantum Electron. 1(2), 624–628 (1995).
[CrossRef]

Böhm, G.

W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55 µm VCSEL Arrays for High-Bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[CrossRef]

Chang-Hasnain, C.

C. Chang-Hasnain, Y. Zhou, M. Huang, and C. Chase, “High-Contrast Grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869–878 (2009).
[CrossRef]

M. Huang, Y. Zhou, and C. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[CrossRef]

L. Eng, K. Bacher, W. Yuen, J. Harris, and C. Chang-Hasnain, “Multiple Wavelength Vertical Cavity Laser Arrays on Patterned Substrates,” IEEE J. Quantum Electron. 1(2), 624–628 (1995).
[CrossRef]

C. Chang-Hasnain, J. Harbison, C. Zah, M. Maeda, L. Florez, N. Stoffel, and T. P. Lee, “Multiple Wavelength Tunable Surface Emitting Laser Arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[CrossRef]

C. Chang-Hasnain, M. Maeda, N. Stoffel, J. Harbison, L. Florez, and J. Jewell, “Surface Emitting Laser Arrays with Uniformly Separated Wavelengths,” Electron. Lett. 26(13), 940–941 (1990).
[CrossRef]

Chang-Hasnain, C. J.

Chase, C.

C. Chang-Hasnain, Y. Zhou, M. Huang, and C. Chase, “High-Contrast Grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869–878 (2009).
[CrossRef]

Coldren, L.

T. Wipiejewski, M. Peters, E. Hegblom, and L. Coldren, “Vertical-cavity surface-emitting laser diodes with post-growth wavelength adjustment,” IEEE Photon. Technol. Lett. 7(7), 727–729 (1995).
[CrossRef]

Deng, Y

C. F. R. Mateus, M. C. Y. Huang, Y Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[CrossRef]

Eng, L.

L. Eng, K. Bacher, W. Yuen, J. Harris, and C. Chang-Hasnain, “Multiple Wavelength Vertical Cavity Laser Arrays on Patterned Substrates,” IEEE J. Quantum Electron. 1(2), 624–628 (1995).
[CrossRef]

Florez, L.

C. Chang-Hasnain, J. Harbison, C. Zah, M. Maeda, L. Florez, N. Stoffel, and T. P. Lee, “Multiple Wavelength Tunable Surface Emitting Laser Arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[CrossRef]

C. Chang-Hasnain, M. Maeda, N. Stoffel, J. Harbison, L. Florez, and J. Jewell, “Surface Emitting Laser Arrays with Uniformly Separated Wavelengths,” Electron. Lett. 26(13), 940–941 (1990).
[CrossRef]

Gaylord, T. K.

Harbison, J.

C. Chang-Hasnain, J. Harbison, C. Zah, M. Maeda, L. Florez, N. Stoffel, and T. P. Lee, “Multiple Wavelength Tunable Surface Emitting Laser Arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[CrossRef]

C. Chang-Hasnain, M. Maeda, N. Stoffel, J. Harbison, L. Florez, and J. Jewell, “Surface Emitting Laser Arrays with Uniformly Separated Wavelengths,” Electron. Lett. 26(13), 940–941 (1990).
[CrossRef]

Harris, J.

L. Eng, K. Bacher, W. Yuen, J. Harris, and C. Chang-Hasnain, “Multiple Wavelength Vertical Cavity Laser Arrays on Patterned Substrates,” IEEE J. Quantum Electron. 1(2), 624–628 (1995).
[CrossRef]

Hatori, N.

F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, “Wavelength control of vertical cavity surface-emitting lasers by using nonplanar MOCVD,” IEEE Photon. Technol. Lett. 7(1), 10–12 (1995).
[CrossRef]

Hayashi, Y.

F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, “Wavelength control of vertical cavity surface-emitting lasers by using nonplanar MOCVD,” IEEE Photon. Technol. Lett. 7(1), 10–12 (1995).
[CrossRef]

Hegblom, E.

T. Wipiejewski, M. Peters, E. Hegblom, and L. Coldren, “Vertical-cavity surface-emitting laser diodes with post-growth wavelength adjustment,” IEEE Photon. Technol. Lett. 7(7), 727–729 (1995).
[CrossRef]

Hofmann, W.

W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55 µm VCSEL Arrays for High-Bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[CrossRef]

Huang, M.

C. Chang-Hasnain, Y. Zhou, M. Huang, and C. Chase, “High-Contrast Grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869–878 (2009).
[CrossRef]

M. Huang, Y. Zhou, and C. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[CrossRef]

Huang, M. C.

Huang, M. C. Y.

C. F. R. Mateus, M. C. Y. Huang, Y Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[CrossRef]

Iga, K.

F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, “Wavelength control of vertical cavity surface-emitting lasers by using nonplanar MOCVD,” IEEE Photon. Technol. Lett. 7(1), 10–12 (1995).
[CrossRef]

Jewell, J.

C. Chang-Hasnain, M. Maeda, N. Stoffel, J. Harbison, L. Florez, and J. Jewell, “Surface Emitting Laser Arrays with Uniformly Separated Wavelengths,” Electron. Lett. 26(13), 940–941 (1990).
[CrossRef]

Karagodsky, V.

Kern, J.

Koyama, F.

F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, “Wavelength control of vertical cavity surface-emitting lasers by using nonplanar MOCVD,” IEEE Photon. Technol. Lett. 7(1), 10–12 (1995).
[CrossRef]

Lee, T. P.

C. Chang-Hasnain, J. Harbison, C. Zah, M. Maeda, L. Florez, N. Stoffel, and T. P. Lee, “Multiple Wavelength Tunable Surface Emitting Laser Arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[CrossRef]

Maeda, M.

C. Chang-Hasnain, J. Harbison, C. Zah, M. Maeda, L. Florez, N. Stoffel, and T. P. Lee, “Multiple Wavelength Tunable Surface Emitting Laser Arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[CrossRef]

C. Chang-Hasnain, M. Maeda, N. Stoffel, J. Harbison, L. Florez, and J. Jewell, “Surface Emitting Laser Arrays with Uniformly Separated Wavelengths,” Electron. Lett. 26(13), 940–941 (1990).
[CrossRef]

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, Y Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[CrossRef]

Moewe, M.

Moharam, M. G.

Mukaihara, T.

F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, “Wavelength control of vertical cavity surface-emitting lasers by using nonplanar MOCVD,” IEEE Photon. Technol. Lett. 7(1), 10–12 (1995).
[CrossRef]

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[CrossRef]

Ohnoki, N.

F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, “Wavelength control of vertical cavity surface-emitting lasers by using nonplanar MOCVD,” IEEE Photon. Technol. Lett. 7(1), 10–12 (1995).
[CrossRef]

Ortsiefer, M.

W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55 µm VCSEL Arrays for High-Bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[CrossRef]

Pesala, B.

Peters, M.

T. Wipiejewski, M. Peters, E. Hegblom, and L. Coldren, “Vertical-cavity surface-emitting laser diodes with post-growth wavelength adjustment,” IEEE Photon. Technol. Lett. 7(7), 727–729 (1995).
[CrossRef]

Sedgwick, F. G.

Stoffel, N.

C. Chang-Hasnain, J. Harbison, C. Zah, M. Maeda, L. Florez, N. Stoffel, and T. P. Lee, “Multiple Wavelength Tunable Surface Emitting Laser Arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[CrossRef]

C. Chang-Hasnain, M. Maeda, N. Stoffel, J. Harbison, L. Florez, and J. Jewell, “Surface Emitting Laser Arrays with Uniformly Separated Wavelengths,” Electron. Lett. 26(13), 940–941 (1990).
[CrossRef]

Wipiejewski, T.

T. Wipiejewski, M. Peters, E. Hegblom, and L. Coldren, “Vertical-cavity surface-emitting laser diodes with post-growth wavelength adjustment,” IEEE Photon. Technol. Lett. 7(7), 727–729 (1995).
[CrossRef]

Wong, E.

W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55 µm VCSEL Arrays for High-Bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[CrossRef]

Yuen, W.

L. Eng, K. Bacher, W. Yuen, J. Harris, and C. Chang-Hasnain, “Multiple Wavelength Vertical Cavity Laser Arrays on Patterned Substrates,” IEEE J. Quantum Electron. 1(2), 624–628 (1995).
[CrossRef]

Zah, C.

C. Chang-Hasnain, J. Harbison, C. Zah, M. Maeda, L. Florez, N. Stoffel, and T. P. Lee, “Multiple Wavelength Tunable Surface Emitting Laser Arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[CrossRef]

Zhou, Y.

Zhu, N. H.

W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55 µm VCSEL Arrays for High-Bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[CrossRef]

Electron. Lett. (1)

C. Chang-Hasnain, M. Maeda, N. Stoffel, J. Harbison, L. Florez, and J. Jewell, “Surface Emitting Laser Arrays with Uniformly Separated Wavelengths,” Electron. Lett. 26(13), 940–941 (1990).
[CrossRef]

IEEE J. Quantum Electron. (2)

C. Chang-Hasnain, J. Harbison, C. Zah, M. Maeda, L. Florez, N. Stoffel, and T. P. Lee, “Multiple Wavelength Tunable Surface Emitting Laser Arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[CrossRef]

L. Eng, K. Bacher, W. Yuen, J. Harris, and C. Chang-Hasnain, “Multiple Wavelength Vertical Cavity Laser Arrays on Patterned Substrates,” IEEE J. Quantum Electron. 1(2), 624–628 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Chang-Hasnain, Y. Zhou, M. Huang, and C. Chase, “High-Contrast Grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869–878 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55 µm VCSEL Arrays for High-Bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[CrossRef]

F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, “Wavelength control of vertical cavity surface-emitting lasers by using nonplanar MOCVD,” IEEE Photon. Technol. Lett. 7(1), 10–12 (1995).
[CrossRef]

T. Wipiejewski, M. Peters, E. Hegblom, and L. Coldren, “Vertical-cavity surface-emitting laser diodes with post-growth wavelength adjustment,” IEEE Photon. Technol. Lett. 7(7), 727–729 (1995).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

Nat. Photonics (1)

M. Huang, Y. Zhou, and C. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[CrossRef]

Opt. Express (2)

Other (2)

A. Yariv, Optical Electronics in Modern Communications, (Oxford University Press, 1997).

V. Karagodsky, M. C. Y. Huang, and C. J. Chang-Hasnain, “Analytical Solution and Design Guideline for Highly Reflective Subwavelength Gratings,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO’08), San Jose, USA, Paper number JTuA128, (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the HCG and its high-reflectivity mechanism. The blue bars represent a semiconductor material with high refractive index of e.g. ~3.5. The grating bars are surrounded by a low index medium, such as air or oxide [6]. When a wave is incident on the grating, its energy is coupled into several eigenmodes of the HCG. These modes propagate through the grating at different phase velocities. For certain HCG designs, the excited set of modes (including their reflections) interferes destructively at the bottom grating interface, resulting in zero coupling into a transmitted plane wave, and thus ~100% reflection.

Fig. 2
Fig. 2

1550-nm VCSEL schematic. This device consists of, starting from the bottom, a conventional dielectric DBR as bottom mirror, VCSEL cavity serving as heat and current spreader including an active region and a current aperture, topped by an air gap with an HCG above as top-reflector.

Fig. 3
Fig. 3

Schematic of the proposed HCG VCSEL array. Modifying the lateral dimensions of the HCG from VCSEL to VCSEL changes the HCG reflectivity phase, which facilitates control over the lasing wavelength of each VCSEL. Thus, a MW VCSEL array can be created.

Fig. 4
Fig. 4

Example of two HCG mirror designs facilitating lasing at two different wavelengths: 1450 nm (a) and 1550 nm (b). The HCG thickness is identical in both designs, since all HCGs are patterned on the same layer. The lateral dimensions (HCG period, Λ, and bar width, s) are varied. Thicker HCGs can facilitate larger potential phase shift. An HCG thickness of 900 nm provides considerable change in HCG phase with small change in lateral dimensions. This results in a wide variation of lasing wavelengths. High quality factor is achieved by high reflectivities (>99.5%) of HCG and DBR mirrors.

Fig. 5
Fig. 5

Span of HCG lateral dimensions, i.e. HCG period (a) and HCG bar width (b), which satisfies lasing conditions across a 200 nm wavelength tuning range, ending at 1576 nm. The design comprises of two parts: the first ending at 1565 nm and the second beginning at 1561 nm, leaving a 4 nm overlap. Each wavelength within the tuning range has at least one suitable HCG design. The relatively small grating aspect ratios shown in (b) are well within the fabrication capabilities of common lithography techniques.

Fig. 6
Fig. 6

(a) Field intensity profile (blue) of the cavity of a MW HCG VCSEL structure overlaid on refractive index of the materials (red) at 1570 nm. (b) Field profile of the active region.

Fig. 7
Fig. 7

Confinement factor of the HCG MW VCSEL array as a function of wavelength. Over the 32 nm of the range (1550-1582 nm), the confinement factor is still >90% of its peak value.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L Cavity λ Lasing + ϕ HCG + ϕ DBR =2π  m ,

Metrics