Abstract

We developed an improved model in order to predict the RF behavior and the slow light properties of the SOA valid for any experimental conditions. It takes into account the dynamic saturation of the SOA, which can be fully characterized by a simple measurement, and only relies on material fitting parameters, independent of the optical intensity and the injected current. The present model is validated by showing a good agreement with experiments for small and large modulation indices.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, "Microwave Photonics," J. Lightwave Technol. 27, 314-335 (2009).
    [CrossRef]
  2. D. Dolfi, P. Joffre, J. Antoine, J-P. Huignard, D. Philippet, and P. Granger, "Experimental demonstration of a phased-array antenna optically controlled with phase and time delays," Appl. Opt. 35, 5293-5300 (1996).
    [CrossRef] [PubMed]
  3. J. Capmany, B. Ortega, and D. Pastor, "A Tutorial on Microwave Photonic Filters," J. Lightwave Technol. 24, 201-229 (2006).
    [CrossRef]
  4. C. J. Chang-Hasnain and S. L. Chuang, "Slow and Fast Light in Semiconductor Quantum-Well and Quantum-Dot Devices," J. Lightwave Technol. 24, 4642-4654 (2006).
    [CrossRef]
  5. H. Su, and S. L. Chuang, "Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers," Appl. Phys. Lett. 88, 061102 (2006).
    [CrossRef]
  6. A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, "Delay Limit of Slow Light in Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 18, 731-733 (2006).
    [CrossRef]
  7. B. Pesala, F. Sedgwick, A. Uskov, and C. Chang-Hasnain, "Ultrahigh-bandwidth electrically tunable fast and slow light in semiconductor optical amplifiers," J. Opt. Soc. Am. B 25, C46-C54 (2008).
    [CrossRef]
  8. L. Th’evenaz, "Slow and fast light in optical fibres," Nat. Photonics 2, 474-481 (2008).
    [CrossRef]
  9. P.-C. Ku, F. Sedgwick, C.J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S-L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett. 29, 2291-2293 (2004).
    [CrossRef] [PubMed]
  10. R. Boula-Picard, M. Alouini, J. Lopez, N. Vodjdani, and J.-C. Simon, "Impact of the Gain Saturation Dynamics in Semiconductor Optical Amplifiers on the Characteristics of an Analog Optical Link," J. Lightwave Technol. 23, 2420-2426 (2005).
    [CrossRef]
  11. J. Mørk, R. Kjr, M. van der Poel, and K. Yvind, "Slow light in a semiconductor waveguide at gigahertz frequencies," Opt. Express 13, 8136-8145 (2005).
    [CrossRef] [PubMed]
  12. S. S. Maicas, F. Ohman, J. Capmany, and J. Mørk, "Controlling Microwave Signals by Means of Slow and Fast Light Effects in SOA-EA Structures," IEEE Photon. Technol. Lett. 19, 1589-1591 (2007).
    [CrossRef]
  13. Y. Chen and J. Mørk, "Broadband Microwave Phase Shifter based on High Speed Cross Gain Modulation in Quantum Dot Semiconductor Optical Amplifiers," in International Topical Meeting on Slow and Fast Light, 2009 OSA Technical Digest (Optical Society of America, 2009).
  14. G. P. Agrawal, "Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers," J. Opt. Soc. Am. B 5, 147-159 (1988).
    [CrossRef]
  15. E. Zhou, X. Zhang, and D. Huang, "Evaluating characteristics of semiconductor optical amplifiers using optical pumping near the transparency," J. Opt. Soc. Am. B 24, 2647-2657 (2007).
    [CrossRef]
  16. A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, andM. Krakowski, "Direct observation of the coherent spectral hole in the noise spectrum of a saturated InAs/InP quantum dash amplifier operating near 1550 nm," Opt. Express 16, 2141-2146 (2008).
    [CrossRef] [PubMed]
  17. J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, "Static Gain Saturation Model of Quantum-Dot Semiconductor Optical Amplifiers," IEEE J. Quantum Electron. 44, 658-666 (2008).
    [CrossRef]
  18. S.-W. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, "Slow Light Based on Coherent Population Oscillation in Quantum Dots at Room Temperature," IEEE J. Quantum Electron. 43, 196-205 (2007).
    [CrossRef]
  19. M. J. Connelly, "Wideband Semiconductor Optical Amplifier Steady-State Numerical Model," IEEE J. Quantum Electron. 37, 439-447 (2001).
    [CrossRef]
  20. Y. Chen, W. Xue, F. Ohman, and J. Mork, "Theory of optical-filtering enhanced slow and fast light effects in semiconductor optical waveguides," J. Lightwave Technol. 23, 3734-3743 (2008).
    [CrossRef]
  21. T. Mukai and T. Saitoh, "Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-μm traveling-wave semiconductor laser amplifier Quantum Electronics," J. Quantum Electron. 16, 865-875 (1990)
    [CrossRef]
  22. A. Haug, "Evidence of the importance of auger recombination for InGaAsP lasers," IEE Electron. Lett. 20, 85-86 (1984).
    [CrossRef]
  23. E. Rosencher and B. Vinter, Optoelectronics (Cambridge, 2002).
    [CrossRef]
  24. M. Shtaif, B. Tromborg, and G. Eisenstein, "Noise spectra of semiconductor optical amplifiers: relation between semiclassical and quantum descriptions," J. Quantum Electron. 34, 869-878 (1998).
    [CrossRef]
  25. A. Ouacha, Q. Chen, M. Willander, R. A. Logan, and T. Tanbun-Ek, "Recombination process and its effect on the dc performance of inp/ingaas single-heterojunction bipolar transistors," J. Appl. Phys. 73, 444-4447 (1993).
    [CrossRef]
  26. L. Y. Leu, J. T. Gardner, and S. R. Forrest, "A high-gain, high-bandwidth in0.53ga0.47as/inp heterojunction phototransistor for optical communications," J. Appl. Phys. 69, 1052-1062 (1991).
    [CrossRef]
  27. E. A. J. M. Bente, Y. Barbarin, M. J. R. Heck, and M. K. Smit, "Modeling of integrated extended cavity inp/ingaasp semiconductor modelocked ring lasers," Opt. Quantum Electron. 40, 131-148 (2008).
    [CrossRef]
  28. M. Petrauskas, S. Juodkazis, V. Netikis, M. Willander, A. Ouacha, and B. Hammarlund, "Picosecond carrier dynamics in highly excited ingaas/inp/ingaasp/inp structures," Semiconductor Sci. Technol. 7, 1355-1358 (1992).
    [CrossRef]
  29. E. Shumakher, S. Dill, and G. Eisenstein, "Optoelectronic Oscillator Tunable by an SOA Based Slow Light Element," J. Lightwave Technol. 27, 4063-4068 (2009).
    [CrossRef]
  30. S. O Duill, R. F. O’Dowd, and G. Eisenstein, "On the role of high-order coherent population oscillations in slow and fast light propagation using semiconductor optical amplifiers," J. Sel. Top. Quantum Electron. 15, 578-584 (2009).
    [CrossRef]
  31. P. Berger, J. Bourderionnet, M. Alouini,F. Bretenaker and D. Dolfi, "Theoretical Study of the Spurious-Free Dynamic Range of a Tunable Delay Line based on Slow Light in SOA," Opt. Express 27, 20584-20597 (2009).
    [CrossRef]

2009 (4)

J. Yao, "Microwave Photonics," J. Lightwave Technol. 27, 314-335 (2009).
[CrossRef]

E. Shumakher, S. Dill, and G. Eisenstein, "Optoelectronic Oscillator Tunable by an SOA Based Slow Light Element," J. Lightwave Technol. 27, 4063-4068 (2009).
[CrossRef]

S. O Duill, R. F. O’Dowd, and G. Eisenstein, "On the role of high-order coherent population oscillations in slow and fast light propagation using semiconductor optical amplifiers," J. Sel. Top. Quantum Electron. 15, 578-584 (2009).
[CrossRef]

P. Berger, J. Bourderionnet, M. Alouini,F. Bretenaker and D. Dolfi, "Theoretical Study of the Spurious-Free Dynamic Range of a Tunable Delay Line based on Slow Light in SOA," Opt. Express 27, 20584-20597 (2009).
[CrossRef]

2008 (6)

E. A. J. M. Bente, Y. Barbarin, M. J. R. Heck, and M. K. Smit, "Modeling of integrated extended cavity inp/ingaasp semiconductor modelocked ring lasers," Opt. Quantum Electron. 40, 131-148 (2008).
[CrossRef]

Y. Chen, W. Xue, F. Ohman, and J. Mork, "Theory of optical-filtering enhanced slow and fast light effects in semiconductor optical waveguides," J. Lightwave Technol. 23, 3734-3743 (2008).
[CrossRef]

B. Pesala, F. Sedgwick, A. Uskov, and C. Chang-Hasnain, "Ultrahigh-bandwidth electrically tunable fast and slow light in semiconductor optical amplifiers," J. Opt. Soc. Am. B 25, C46-C54 (2008).
[CrossRef]

L. Th’evenaz, "Slow and fast light in optical fibres," Nat. Photonics 2, 474-481 (2008).
[CrossRef]

A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, andM. Krakowski, "Direct observation of the coherent spectral hole in the noise spectrum of a saturated InAs/InP quantum dash amplifier operating near 1550 nm," Opt. Express 16, 2141-2146 (2008).
[CrossRef] [PubMed]

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, "Static Gain Saturation Model of Quantum-Dot Semiconductor Optical Amplifiers," IEEE J. Quantum Electron. 44, 658-666 (2008).
[CrossRef]

2007 (3)

S.-W. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, "Slow Light Based on Coherent Population Oscillation in Quantum Dots at Room Temperature," IEEE J. Quantum Electron. 43, 196-205 (2007).
[CrossRef]

S. S. Maicas, F. Ohman, J. Capmany, and J. Mørk, "Controlling Microwave Signals by Means of Slow and Fast Light Effects in SOA-EA Structures," IEEE Photon. Technol. Lett. 19, 1589-1591 (2007).
[CrossRef]

E. Zhou, X. Zhang, and D. Huang, "Evaluating characteristics of semiconductor optical amplifiers using optical pumping near the transparency," J. Opt. Soc. Am. B 24, 2647-2657 (2007).
[CrossRef]

2006 (4)

J. Capmany, B. Ortega, and D. Pastor, "A Tutorial on Microwave Photonic Filters," J. Lightwave Technol. 24, 201-229 (2006).
[CrossRef]

C. J. Chang-Hasnain and S. L. Chuang, "Slow and Fast Light in Semiconductor Quantum-Well and Quantum-Dot Devices," J. Lightwave Technol. 24, 4642-4654 (2006).
[CrossRef]

H. Su, and S. L. Chuang, "Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers," Appl. Phys. Lett. 88, 061102 (2006).
[CrossRef]

A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, "Delay Limit of Slow Light in Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 18, 731-733 (2006).
[CrossRef]

2005 (2)

2004 (1)

2001 (1)

M. J. Connelly, "Wideband Semiconductor Optical Amplifier Steady-State Numerical Model," IEEE J. Quantum Electron. 37, 439-447 (2001).
[CrossRef]

1998 (1)

M. Shtaif, B. Tromborg, and G. Eisenstein, "Noise spectra of semiconductor optical amplifiers: relation between semiclassical and quantum descriptions," J. Quantum Electron. 34, 869-878 (1998).
[CrossRef]

1996 (1)

1993 (1)

A. Ouacha, Q. Chen, M. Willander, R. A. Logan, and T. Tanbun-Ek, "Recombination process and its effect on the dc performance of inp/ingaas single-heterojunction bipolar transistors," J. Appl. Phys. 73, 444-4447 (1993).
[CrossRef]

1992 (1)

M. Petrauskas, S. Juodkazis, V. Netikis, M. Willander, A. Ouacha, and B. Hammarlund, "Picosecond carrier dynamics in highly excited ingaas/inp/ingaasp/inp structures," Semiconductor Sci. Technol. 7, 1355-1358 (1992).
[CrossRef]

1991 (1)

L. Y. Leu, J. T. Gardner, and S. R. Forrest, "A high-gain, high-bandwidth in0.53ga0.47as/inp heterojunction phototransistor for optical communications," J. Appl. Phys. 69, 1052-1062 (1991).
[CrossRef]

1990 (1)

T. Mukai and T. Saitoh, "Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-μm traveling-wave semiconductor laser amplifier Quantum Electronics," J. Quantum Electron. 16, 865-875 (1990)
[CrossRef]

1988 (1)

1984 (1)

A. Haug, "Evidence of the importance of auger recombination for InGaAsP lasers," IEE Electron. Lett. 20, 85-86 (1984).
[CrossRef]

Agrawal, G. P.

Alouini, M.

P. Berger, J. Bourderionnet, M. Alouini,F. Bretenaker and D. Dolfi, "Theoretical Study of the Spurious-Free Dynamic Range of a Tunable Delay Line based on Slow Light in SOA," Opt. Express 27, 20584-20597 (2009).
[CrossRef]

R. Boula-Picard, M. Alouini, J. Lopez, N. Vodjdani, and J.-C. Simon, "Impact of the Gain Saturation Dynamics in Semiconductor Optical Amplifiers on the Characteristics of an Analog Optical Link," J. Lightwave Technol. 23, 2420-2426 (2005).
[CrossRef]

Antoine, J.

Barbarin, Y.

E. A. J. M. Bente, Y. Barbarin, M. J. R. Heck, and M. K. Smit, "Modeling of integrated extended cavity inp/ingaasp semiconductor modelocked ring lasers," Opt. Quantum Electron. 40, 131-148 (2008).
[CrossRef]

Bente, E. A. J. M.

E. A. J. M. Bente, Y. Barbarin, M. J. R. Heck, and M. K. Smit, "Modeling of integrated extended cavity inp/ingaasp semiconductor modelocked ring lasers," Opt. Quantum Electron. 40, 131-148 (2008).
[CrossRef]

Berger, P.

P. Berger, J. Bourderionnet, M. Alouini,F. Bretenaker and D. Dolfi, "Theoretical Study of the Spurious-Free Dynamic Range of a Tunable Delay Line based on Slow Light in SOA," Opt. Express 27, 20584-20597 (2009).
[CrossRef]

Bimberg, D.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, "Static Gain Saturation Model of Quantum-Dot Semiconductor Optical Amplifiers," IEEE J. Quantum Electron. 44, 658-666 (2008).
[CrossRef]

Boula-Picard, R.

Bourderionnet, J.

P. Berger, J. Bourderionnet, M. Alouini,F. Bretenaker and D. Dolfi, "Theoretical Study of the Spurious-Free Dynamic Range of a Tunable Delay Line based on Slow Light in SOA," Opt. Express 27, 20584-20597 (2009).
[CrossRef]

Bretenaker, F.

P. Berger, J. Bourderionnet, M. Alouini,F. Bretenaker and D. Dolfi, "Theoretical Study of the Spurious-Free Dynamic Range of a Tunable Delay Line based on Slow Light in SOA," Opt. Express 27, 20584-20597 (2009).
[CrossRef]

Calligaro, M.

Capmany, J.

Capua, A.

Chang, S.-W.

S.-W. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, "Slow Light Based on Coherent Population Oscillation in Quantum Dots at Room Temperature," IEEE J. Quantum Electron. 43, 196-205 (2007).
[CrossRef]

P.-C. Ku, F. Sedgwick, C.J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S-L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett. 29, 2291-2293 (2004).
[CrossRef] [PubMed]

Chang-Hasnain, C.

Chang-Hasnain, C. J.

C. J. Chang-Hasnain and S. L. Chuang, "Slow and Fast Light in Semiconductor Quantum-Well and Quantum-Dot Devices," J. Lightwave Technol. 24, 4642-4654 (2006).
[CrossRef]

A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, "Delay Limit of Slow Light in Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 18, 731-733 (2006).
[CrossRef]

Chang-Hasnain, C.J.

Chen, Q.

A. Ouacha, Q. Chen, M. Willander, R. A. Logan, and T. Tanbun-Ek, "Recombination process and its effect on the dc performance of inp/ingaas single-heterojunction bipolar transistors," J. Appl. Phys. 73, 444-4447 (1993).
[CrossRef]

Chen, Y.

Y. Chen, W. Xue, F. Ohman, and J. Mork, "Theory of optical-filtering enhanced slow and fast light effects in semiconductor optical waveguides," J. Lightwave Technol. 23, 3734-3743 (2008).
[CrossRef]

Chuang, S. L.

S.-W. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, "Slow Light Based on Coherent Population Oscillation in Quantum Dots at Room Temperature," IEEE J. Quantum Electron. 43, 196-205 (2007).
[CrossRef]

C. J. Chang-Hasnain and S. L. Chuang, "Slow and Fast Light in Semiconductor Quantum-Well and Quantum-Dot Devices," J. Lightwave Technol. 24, 4642-4654 (2006).
[CrossRef]

H. Su, and S. L. Chuang, "Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers," Appl. Phys. Lett. 88, 061102 (2006).
[CrossRef]

Chuang, S-L.

Connelly, M. J.

M. J. Connelly, "Wideband Semiconductor Optical Amplifier Steady-State Numerical Model," IEEE J. Quantum Electron. 37, 439-447 (2001).
[CrossRef]

Dill, S.

Dolfi, D.

P. Berger, J. Bourderionnet, M. Alouini,F. Bretenaker and D. Dolfi, "Theoretical Study of the Spurious-Free Dynamic Range of a Tunable Delay Line based on Slow Light in SOA," Opt. Express 27, 20584-20597 (2009).
[CrossRef]

D. Dolfi, P. Joffre, J. Antoine, J-P. Huignard, D. Philippet, and P. Granger, "Experimental demonstration of a phased-array antenna optically controlled with phase and time delays," Appl. Opt. 35, 5293-5300 (1996).
[CrossRef] [PubMed]

Duill, S. O

S. O Duill, R. F. O’Dowd, and G. Eisenstein, "On the role of high-order coherent population oscillations in slow and fast light propagation using semiconductor optical amplifiers," J. Sel. Top. Quantum Electron. 15, 578-584 (2009).
[CrossRef]

Eisenstein, G.

S. O Duill, R. F. O’Dowd, and G. Eisenstein, "On the role of high-order coherent population oscillations in slow and fast light propagation using semiconductor optical amplifiers," J. Sel. Top. Quantum Electron. 15, 578-584 (2009).
[CrossRef]

E. Shumakher, S. Dill, and G. Eisenstein, "Optoelectronic Oscillator Tunable by an SOA Based Slow Light Element," J. Lightwave Technol. 27, 4063-4068 (2009).
[CrossRef]

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, "Static Gain Saturation Model of Quantum-Dot Semiconductor Optical Amplifiers," IEEE J. Quantum Electron. 44, 658-666 (2008).
[CrossRef]

A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, andM. Krakowski, "Direct observation of the coherent spectral hole in the noise spectrum of a saturated InAs/InP quantum dash amplifier operating near 1550 nm," Opt. Express 16, 2141-2146 (2008).
[CrossRef] [PubMed]

M. Shtaif, B. Tromborg, and G. Eisenstein, "Noise spectra of semiconductor optical amplifiers: relation between semiclassical and quantum descriptions," J. Quantum Electron. 34, 869-878 (1998).
[CrossRef]

Forchel, A.

Forrest, S. R.

L. Y. Leu, J. T. Gardner, and S. R. Forrest, "A high-gain, high-bandwidth in0.53ga0.47as/inp heterojunction phototransistor for optical communications," J. Appl. Phys. 69, 1052-1062 (1991).
[CrossRef]

Gardner, J. T.

L. Y. Leu, J. T. Gardner, and S. R. Forrest, "A high-gain, high-bandwidth in0.53ga0.47as/inp heterojunction phototransistor for optical communications," J. Appl. Phys. 69, 1052-1062 (1991).
[CrossRef]

Granger, P.

Hammarlund, B.

M. Petrauskas, S. Juodkazis, V. Netikis, M. Willander, A. Ouacha, and B. Hammarlund, "Picosecond carrier dynamics in highly excited ingaas/inp/ingaasp/inp structures," Semiconductor Sci. Technol. 7, 1355-1358 (1992).
[CrossRef]

Haug, A.

A. Haug, "Evidence of the importance of auger recombination for InGaAsP lasers," IEE Electron. Lett. 20, 85-86 (1984).
[CrossRef]

Heck, M. J. R.

E. A. J. M. Bente, Y. Barbarin, M. J. R. Heck, and M. K. Smit, "Modeling of integrated extended cavity inp/ingaasp semiconductor modelocked ring lasers," Opt. Quantum Electron. 40, 131-148 (2008).
[CrossRef]

Huang, D.

Huignard, J-P.

Joffre, P.

Juodkazis, S.

M. Petrauskas, S. Juodkazis, V. Netikis, M. Willander, A. Ouacha, and B. Hammarlund, "Picosecond carrier dynamics in highly excited ingaas/inp/ingaasp/inp structures," Semiconductor Sci. Technol. 7, 1355-1358 (1992).
[CrossRef]

Kim, J.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, "Static Gain Saturation Model of Quantum-Dot Semiconductor Optical Amplifiers," IEEE J. Quantum Electron. 44, 658-666 (2008).
[CrossRef]

Kjr, R.

Kondratko, P. K.

S.-W. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, "Slow Light Based on Coherent Population Oscillation in Quantum Dots at Room Temperature," IEEE J. Quantum Electron. 43, 196-205 (2007).
[CrossRef]

Ku, P.-C.

Laemmlin, M.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, "Static Gain Saturation Model of Quantum-Dot Semiconductor Optical Amplifiers," IEEE J. Quantum Electron. 44, 658-666 (2008).
[CrossRef]

Leu, L. Y.

L. Y. Leu, J. T. Gardner, and S. R. Forrest, "A high-gain, high-bandwidth in0.53ga0.47as/inp heterojunction phototransistor for optical communications," J. Appl. Phys. 69, 1052-1062 (1991).
[CrossRef]

Li, T.

Logan, R. A.

A. Ouacha, Q. Chen, M. Willander, R. A. Logan, and T. Tanbun-Ek, "Recombination process and its effect on the dc performance of inp/ingaas single-heterojunction bipolar transistors," J. Appl. Phys. 73, 444-4447 (1993).
[CrossRef]

Lopez, J.

Maicas, S. S.

S. S. Maicas, F. Ohman, J. Capmany, and J. Mørk, "Controlling Microwave Signals by Means of Slow and Fast Light Effects in SOA-EA Structures," IEEE Photon. Technol. Lett. 19, 1589-1591 (2007).
[CrossRef]

Meuer, C.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, "Static Gain Saturation Model of Quantum-Dot Semiconductor Optical Amplifiers," IEEE J. Quantum Electron. 44, 658-666 (2008).
[CrossRef]

Mikhelashvili, V.

Mork, J.

Y. Chen, W. Xue, F. Ohman, and J. Mork, "Theory of optical-filtering enhanced slow and fast light effects in semiconductor optical waveguides," J. Lightwave Technol. 23, 3734-3743 (2008).
[CrossRef]

Mørk, J.

Mukai, T.

T. Mukai and T. Saitoh, "Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-μm traveling-wave semiconductor laser amplifier Quantum Electronics," J. Quantum Electron. 16, 865-875 (1990)
[CrossRef]

Netikis, V.

M. Petrauskas, S. Juodkazis, V. Netikis, M. Willander, A. Ouacha, and B. Hammarlund, "Picosecond carrier dynamics in highly excited ingaas/inp/ingaasp/inp structures," Semiconductor Sci. Technol. 7, 1355-1358 (1992).
[CrossRef]

O’Dowd, R. F.

S. O Duill, R. F. O’Dowd, and G. Eisenstein, "On the role of high-order coherent population oscillations in slow and fast light propagation using semiconductor optical amplifiers," J. Sel. Top. Quantum Electron. 15, 578-584 (2009).
[CrossRef]

Ohman, F.

Y. Chen, W. Xue, F. Ohman, and J. Mork, "Theory of optical-filtering enhanced slow and fast light effects in semiconductor optical waveguides," J. Lightwave Technol. 23, 3734-3743 (2008).
[CrossRef]

Ortega, B.

Ouacha, A.

A. Ouacha, Q. Chen, M. Willander, R. A. Logan, and T. Tanbun-Ek, "Recombination process and its effect on the dc performance of inp/ingaas single-heterojunction bipolar transistors," J. Appl. Phys. 73, 444-4447 (1993).
[CrossRef]

M. Petrauskas, S. Juodkazis, V. Netikis, M. Willander, A. Ouacha, and B. Hammarlund, "Picosecond carrier dynamics in highly excited ingaas/inp/ingaasp/inp structures," Semiconductor Sci. Technol. 7, 1355-1358 (1992).
[CrossRef]

Palinginis, P.

Parillaud, O.

Pastor, D.

Pesala, B.

Petrauskas, M.

M. Petrauskas, S. Juodkazis, V. Netikis, M. Willander, A. Ouacha, and B. Hammarlund, "Picosecond carrier dynamics in highly excited ingaas/inp/ingaasp/inp structures," Semiconductor Sci. Technol. 7, 1355-1358 (1992).
[CrossRef]

Philippet, D.

Reithmaier, J. P.

Saitoh, T.

T. Mukai and T. Saitoh, "Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-μm traveling-wave semiconductor laser amplifier Quantum Electronics," J. Quantum Electron. 16, 865-875 (1990)
[CrossRef]

Sedgwick, F.

Sedgwick, F. G.

A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, "Delay Limit of Slow Light in Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 18, 731-733 (2006).
[CrossRef]

Shtaif, M.

M. Shtaif, B. Tromborg, and G. Eisenstein, "Noise spectra of semiconductor optical amplifiers: relation between semiclassical and quantum descriptions," J. Quantum Electron. 34, 869-878 (1998).
[CrossRef]

Shumakher, E.

Simon, J.-C.

Smit, M. K.

E. A. J. M. Bente, Y. Barbarin, M. J. R. Heck, and M. K. Smit, "Modeling of integrated extended cavity inp/ingaasp semiconductor modelocked ring lasers," Opt. Quantum Electron. 40, 131-148 (2008).
[CrossRef]

Somers, A.

Su, H.

S.-W. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, "Slow Light Based on Coherent Population Oscillation in Quantum Dots at Room Temperature," IEEE J. Quantum Electron. 43, 196-205 (2007).
[CrossRef]

H. Su, and S. L. Chuang, "Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers," Appl. Phys. Lett. 88, 061102 (2006).
[CrossRef]

Tanbun-Ek, T.

A. Ouacha, Q. Chen, M. Willander, R. A. Logan, and T. Tanbun-Ek, "Recombination process and its effect on the dc performance of inp/ingaas single-heterojunction bipolar transistors," J. Appl. Phys. 73, 444-4447 (1993).
[CrossRef]

Th’evenaz, L.

L. Th’evenaz, "Slow and fast light in optical fibres," Nat. Photonics 2, 474-481 (2008).
[CrossRef]

Tromborg, B.

M. Shtaif, B. Tromborg, and G. Eisenstein, "Noise spectra of semiconductor optical amplifiers: relation between semiclassical and quantum descriptions," J. Quantum Electron. 34, 869-878 (1998).
[CrossRef]

Uskov, A.

Uskov, A. V.

A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, "Delay Limit of Slow Light in Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 18, 731-733 (2006).
[CrossRef]

van der Poel, M.

Vodjdani, N.

Wang, H.

Willander, M.

A. Ouacha, Q. Chen, M. Willander, R. A. Logan, and T. Tanbun-Ek, "Recombination process and its effect on the dc performance of inp/ingaas single-heterojunction bipolar transistors," J. Appl. Phys. 73, 444-4447 (1993).
[CrossRef]

M. Petrauskas, S. Juodkazis, V. Netikis, M. Willander, A. Ouacha, and B. Hammarlund, "Picosecond carrier dynamics in highly excited ingaas/inp/ingaasp/inp structures," Semiconductor Sci. Technol. 7, 1355-1358 (1992).
[CrossRef]

Xue, W.

Y. Chen, W. Xue, F. Ohman, and J. Mork, "Theory of optical-filtering enhanced slow and fast light effects in semiconductor optical waveguides," J. Lightwave Technol. 23, 3734-3743 (2008).
[CrossRef]

Yao, J.

Yvind, K.

Zhang, X.

Zhou, E.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Su, and S. L. Chuang, "Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers," Appl. Phys. Lett. 88, 061102 (2006).
[CrossRef]

IEE Electron. Lett. (1)

A. Haug, "Evidence of the importance of auger recombination for InGaAsP lasers," IEE Electron. Lett. 20, 85-86 (1984).
[CrossRef]

IEEE J. Quantum Electron. (3)

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, "Static Gain Saturation Model of Quantum-Dot Semiconductor Optical Amplifiers," IEEE J. Quantum Electron. 44, 658-666 (2008).
[CrossRef]

S.-W. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, "Slow Light Based on Coherent Population Oscillation in Quantum Dots at Room Temperature," IEEE J. Quantum Electron. 43, 196-205 (2007).
[CrossRef]

M. J. Connelly, "Wideband Semiconductor Optical Amplifier Steady-State Numerical Model," IEEE J. Quantum Electron. 37, 439-447 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. S. Maicas, F. Ohman, J. Capmany, and J. Mørk, "Controlling Microwave Signals by Means of Slow and Fast Light Effects in SOA-EA Structures," IEEE Photon. Technol. Lett. 19, 1589-1591 (2007).
[CrossRef]

A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, "Delay Limit of Slow Light in Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett. 18, 731-733 (2006).
[CrossRef]

J. Appl. Phys. (2)

A. Ouacha, Q. Chen, M. Willander, R. A. Logan, and T. Tanbun-Ek, "Recombination process and its effect on the dc performance of inp/ingaas single-heterojunction bipolar transistors," J. Appl. Phys. 73, 444-4447 (1993).
[CrossRef]

L. Y. Leu, J. T. Gardner, and S. R. Forrest, "A high-gain, high-bandwidth in0.53ga0.47as/inp heterojunction phototransistor for optical communications," J. Appl. Phys. 69, 1052-1062 (1991).
[CrossRef]

J. Lightwave Technol. (6)

J. Opt. Soc. Am. B (3)

J. Quantum Electron. (2)

T. Mukai and T. Saitoh, "Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-μm traveling-wave semiconductor laser amplifier Quantum Electronics," J. Quantum Electron. 16, 865-875 (1990)
[CrossRef]

M. Shtaif, B. Tromborg, and G. Eisenstein, "Noise spectra of semiconductor optical amplifiers: relation between semiclassical and quantum descriptions," J. Quantum Electron. 34, 869-878 (1998).
[CrossRef]

J. Sel. Top. Quantum Electron. (1)

S. O Duill, R. F. O’Dowd, and G. Eisenstein, "On the role of high-order coherent population oscillations in slow and fast light propagation using semiconductor optical amplifiers," J. Sel. Top. Quantum Electron. 15, 578-584 (2009).
[CrossRef]

Nat. Photonics (1)

L. Th’evenaz, "Slow and fast light in optical fibres," Nat. Photonics 2, 474-481 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

E. A. J. M. Bente, Y. Barbarin, M. J. R. Heck, and M. K. Smit, "Modeling of integrated extended cavity inp/ingaasp semiconductor modelocked ring lasers," Opt. Quantum Electron. 40, 131-148 (2008).
[CrossRef]

Semiconductor Sci. Technol. (1)

M. Petrauskas, S. Juodkazis, V. Netikis, M. Willander, A. Ouacha, and B. Hammarlund, "Picosecond carrier dynamics in highly excited ingaas/inp/ingaasp/inp structures," Semiconductor Sci. Technol. 7, 1355-1358 (1992).
[CrossRef]

Other (2)

E. Rosencher and B. Vinter, Optoelectronics (Cambridge, 2002).
[CrossRef]

Y. Chen and J. Mørk, "Broadband Microwave Phase Shifter based on High Speed Cross Gain Modulation in Quantum Dot Semiconductor Optical Amplifiers," in International Topical Meeting on Slow and Fast Light, 2009 OSA Technical Digest (Optical Society of America, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Experimental fiber-to-fiber gain G with respect to the output optical power Pout at a strong current (500 mA). The double arrow indicates the range of the measured ASE output power. (b) Experimental small signal gain Γg 0 as a function of the injected current I at 1535 nm, and fitted by: Γ g 0 = C 1 C 2 I , with C 1 = 5588.7m-1 and C 2 = 306.1A-1 .m-1. (c) Deduced material modal gain Γg(U) as a function of the local intensity U at 500 mA.

Fig. 2.
Fig. 2.

Experimental set-up. For small modulation index m, a laser is externally modulated by a Mach-Zehnder modulator (MZ) (a); for large modulation index, a directly modulated laser is used (b). In both cases, the input optical power Pin is controlled through a variable optical attenuator; two optical isolators are used before and after the SOA. The photode-tector (PD) restitute the RF signal. The Vector Network Analyser (VNA) is calibrated with the whole link without the SOA, in order to measure the RF transfer function of the SOA.

Fig. 3.
Fig. 3.

Low modulation index (m = 0.06) : gain and phase shift simulations (dashed line) and experimental data (solid line) for (a) and (b): different injected currents at Pin = 0dBm, and for (c) and (d): different optical input powers Pin at I = 500mA. The operating wavelength was 1535nm.

Fig. 4.
Fig. 4.

Large modulation index (m > 0.6): gain and phase shift simulations (dashed line) and experimental data (solid line) for (a) and (b): different injected currents at Pin = 0dBm. The operating wavelength was 1548.5nm.

Fig. 5.
Fig. 5.

(a) and (b): Simulated carrier density N̄ along the SOA: (a) at a fixed input optical power (0 dBm), for various currents; (b) at a fixed current (500 mA), for various input optical power. (c) and (d): Simulated variations with respect to the carrier density N̄ of (c) the modal gain Γg (solid line), and the modal differential gain a (dashed line); (d) the carrier lifetime τs (solid line), and the local saturation power Ps (dashed line).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

dN ( z , t ) dt = I qV N ( z , t ) τ s g ( z , t ) E total ( z , t ) 2 h ̄ ω ,
d E total ( z , t ) 2 dz = E total ( z , t ) 2 [ γ + Γ g ( z , t ) ] ,
dU dz = U [ γ + Γ g ( N ̄ ) ] ,
dM dz = M { γ + Γ g ( N ̄ ) ( 1 U / U s ( N ̄ ) 1 + U / U s ( N ) i Ω τ s ( N ) ) } ,
I q L S act = N ̄ τ s ,
I q L S act N ̄ τ s Γ g ( N ̄ τ s ) h ̄ ω U Γ = 0 ,
N ̄ τ s = A N ̄ + B N ̄ 2 + C N ̄ 3 ,
dU dz = U [ γ + Γ g ( U ( z ) Γ , I ) ] ,
dM dz = M { γ + Γ g ( U ( z ) Γ , I ) [ 1 Γ U / U s ( U ( z ) Γ , I ) 1 + Γ U / U s ( U ( z ) Γ , I ) i Ω τ s ( U ( z ) Γ , I ) ] } .

Metrics