Abstract

Aberrations affect the focal spot quality in direct laser write applications when focusing through a refractive index mismatch. Closed loop adaptive optics can correct these aberrations if a suitable feedback signal can be found. Focusing an ultrafast laser beam into transparent dielectric material can lead to plasma formation in the focal region. We report using the supercontinuum emitted by such a plasma to measure the optical aberrations, the subsequent aberration correction using a spatial light modulator and the fabrication of nanostructures using the corrected optical system.

© 2010 Optical Society of America

Full Article  |  PDF Article

Corrections

Alexander Jesacher, Graham D. Marshall, Tony Wilson, and Martin J. Booth, "Adaptive optics for direct laser writing with plasma emission aberration sensing: erratum," Opt. Express 18, 15399-15399 (2010)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-18-15-15399

References

  • View by:
  • |
  • |
  • |

  1. S. Wong, M. Deubel, F. Prez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses," Adv. Mater. 18,265-269 (2006).
    [CrossRef]
  2. T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffera, "Femtosecond laser-drilled capillary integrated into a microfluidic device," Appl. Phys. Lett. 86,201106 (2005).
    [CrossRef]
  3. V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, and P. Laporta, "Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching," Appl. Phys. Lett. 88,191107 (2006).
    [CrossRef]
  4. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, "Photonic metamaterials by direct laser writing and silver chemical vapour deposition," Nature Materials 7,543-546 (2009).
    [CrossRef]
  5. Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, "3D Metallic Nanostructure Fabrication by Surfactant-Assisted Multiphoton-Induced Reduction," Small 5,1144-1148 (2009).
    [PubMed]
  6. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science 325,1513 (2009).
    [CrossRef] [PubMed]
  7. G. Della Valle, R. Osellame and P. Laporta, "Micromachining of photonic devices by femtosecond laser pulses," J. Opt. A 11,013001 (2009).
  8. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, "Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure," Opt. Express 16,20029-20037 (2008).
    [CrossRef] [PubMed]
  9. C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, "Multiphoton Fabrication," Angew. Chem. Int. Ed. 46,6238-6258 (2007).
    [CrossRef]
  10. M. J. Booth, "Adaptive optics in microscopy," Phil. Trans. R. Soc. A 365,2829-2843 (2007).
    [CrossRef] [PubMed]
  11. S. Campbell, S. M. F. Triphan, R. El-Agmy, A. H. Greenaway, and D. T. Reid, "Direct optimization of femtosecond laser ablation using adaptive wavefront shaping," J. Opt. A 9,11001104 (2007).
  12. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, "Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction," Opt. Express 16,5481-5492 (2008).
    [CrossRef] [PubMed]
  13. N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, and R. Valle, "Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses," Opt. Lett. 28,1591-1593 (2003).
    [CrossRef] [PubMed]
  14. M. A. A. Neil, M. J. Booth and T. Wilson, "New modal wave-front sensor: a theoretical analysis," J. Opt. Soc. Am. 17,1098-1107 (2000).
    [CrossRef]
  15. M. J. Booth, M. A. A. Neil, R. Juškaitis and T. Wilson, "Adaptive aberration correction in a confocal microscope," PNAS 99,57885792 (2002).
    [CrossRef]
  16. M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, "Active aberration correction for the writing of three-dimensional optical memory devices," Appl. Opt. 41,1374-1379 (2002).
    [CrossRef] [PubMed]
  17. P. Török, P. Varga, Z. Laczik and G. R. Booker "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation," J. Opt. Soc. Am. A 12,325-331 (1995).
    [CrossRef]
  18. M. J. Booth, M. A. A. Neil and T. Wilson, "Aberration Correction for Confocal Imaging in Refractive Index Mismatched Media," J. Microsc. 192,90-98 (1998).
    [CrossRef]
  19. G. D. Marshall, M. Ams, and M. J. Withford, "Direct laser written waveguide Bragg gratings in bulk fused silica," Opt. Lett. 31,2690-2691 (2006).
    [CrossRef] [PubMed]

2009 (4)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, "Photonic metamaterials by direct laser writing and silver chemical vapour deposition," Nature Materials 7,543-546 (2009).
[CrossRef]

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, "3D Metallic Nanostructure Fabrication by Surfactant-Assisted Multiphoton-Induced Reduction," Small 5,1144-1148 (2009).
[PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science 325,1513 (2009).
[CrossRef] [PubMed]

G. Della Valle, R. Osellame and P. Laporta, "Micromachining of photonic devices by femtosecond laser pulses," J. Opt. A 11,013001 (2009).

2008 (2)

2007 (3)

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, "Multiphoton Fabrication," Angew. Chem. Int. Ed. 46,6238-6258 (2007).
[CrossRef]

M. J. Booth, "Adaptive optics in microscopy," Phil. Trans. R. Soc. A 365,2829-2843 (2007).
[CrossRef] [PubMed]

S. Campbell, S. M. F. Triphan, R. El-Agmy, A. H. Greenaway, and D. T. Reid, "Direct optimization of femtosecond laser ablation using adaptive wavefront shaping," J. Opt. A 9,11001104 (2007).

2006 (3)

S. Wong, M. Deubel, F. Prez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses," Adv. Mater. 18,265-269 (2006).
[CrossRef]

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, and P. Laporta, "Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching," Appl. Phys. Lett. 88,191107 (2006).
[CrossRef]

G. D. Marshall, M. Ams, and M. J. Withford, "Direct laser written waveguide Bragg gratings in bulk fused silica," Opt. Lett. 31,2690-2691 (2006).
[CrossRef] [PubMed]

2005 (1)

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffera, "Femtosecond laser-drilled capillary integrated into a microfluidic device," Appl. Phys. Lett. 86,201106 (2005).
[CrossRef]

2003 (1)

2002 (2)

2000 (1)

M. A. A. Neil, M. J. Booth and T. Wilson, "New modal wave-front sensor: a theoretical analysis," J. Opt. Soc. Am. 17,1098-1107 (2000).
[CrossRef]

1998 (1)

M. J. Booth, M. A. A. Neil and T. Wilson, "Aberration Correction for Confocal Imaging in Refractive Index Mismatched Media," J. Microsc. 192,90-98 (1998).
[CrossRef]

1995 (1)

Ams, M.

Audouard, E.

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science 325,1513 (2009).
[CrossRef] [PubMed]

Baldacchini, T.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, "Multiphoton Fabrication," Angew. Chem. Int. Ed. 46,6238-6258 (2007).
[CrossRef]

Booker, G. R.

Booth, M. J.

M. J. Booth, "Adaptive optics in microscopy," Phil. Trans. R. Soc. A 365,2829-2843 (2007).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, R. Juškaitis and T. Wilson, "Adaptive aberration correction in a confocal microscope," PNAS 99,57885792 (2002).
[CrossRef]

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, "Active aberration correction for the writing of three-dimensional optical memory devices," Appl. Opt. 41,1374-1379 (2002).
[CrossRef] [PubMed]

M. A. A. Neil, M. J. Booth and T. Wilson, "New modal wave-front sensor: a theoretical analysis," J. Opt. Soc. Am. 17,1098-1107 (2000).
[CrossRef]

M. J. Booth, M. A. A. Neil and T. Wilson, "Aberration Correction for Confocal Imaging in Refractive Index Mismatched Media," J. Microsc. 192,90-98 (1998).
[CrossRef]

Campbell, K.

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffera, "Femtosecond laser-drilled capillary integrated into a microfluidic device," Appl. Phys. Lett. 86,201106 (2005).
[CrossRef]

Campbell, S.

S. Campbell, S. M. F. Triphan, R. El-Agmy, A. H. Greenaway, and D. T. Reid, "Direct optimization of femtosecond laser ablation using adaptive wavefront shaping," J. Opt. A 9,11001104 (2007).

Cao, Y. Y.

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, "3D Metallic Nanostructure Fabrication by Surfactant-Assisted Multiphoton-Induced Reduction," Small 5,1144-1148 (2009).
[PubMed]

Cerullo, G.

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, and P. Laporta, "Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching," Appl. Phys. Lett. 88,191107 (2006).
[CrossRef]

Chin, S. L.

Dawes, J. M.

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science 325,1513 (2009).
[CrossRef] [PubMed]

Dekker, P.

Della Valle, G.

G. Della Valle, R. Osellame and P. Laporta, "Micromachining of photonic devices by femtosecond laser pulses," J. Opt. A 11,013001 (2009).

Deubel, M.

S. Wong, M. Deubel, F. Prez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses," Adv. Mater. 18,265-269 (2006).
[CrossRef]

Duan, X. M.

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, "3D Metallic Nanostructure Fabrication by Surfactant-Assisted Multiphoton-Induced Reduction," Small 5,1144-1148 (2009).
[PubMed]

El-Agmy, R.

S. Campbell, S. M. F. Triphan, R. El-Agmy, A. H. Greenaway, and D. T. Reid, "Direct optimization of femtosecond laser ablation using adaptive wavefront shaping," J. Opt. A 9,11001104 (2007).

Farrer, R. A.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, "Multiphoton Fabrication," Angew. Chem. Int. Ed. 46,6238-6258 (2007).
[CrossRef]

Fourkas, J. T.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, "Multiphoton Fabrication," Angew. Chem. Int. Ed. 46,6238-6258 (2007).
[CrossRef]

Freymann, G.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, "Photonic metamaterials by direct laser writing and silver chemical vapour deposition," Nature Materials 7,543-546 (2009).
[CrossRef]

Freymann, G. V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science 325,1513 (2009).
[CrossRef] [PubMed]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science 325,1513 (2009).
[CrossRef] [PubMed]

Greenaway, A. H.

S. Campbell, S. M. F. Triphan, R. El-Agmy, A. H. Greenaway, and D. T. Reid, "Direct optimization of femtosecond laser ablation using adaptive wavefront shaping," J. Opt. A 9,11001104 (2007).

Groisman, A.

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffera, "Femtosecond laser-drilled capillary integrated into a microfluidic device," Appl. Phys. Lett. 86,201106 (2005).
[CrossRef]

Huot, N.

John, S.

S. Wong, M. Deubel, F. Prez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses," Adv. Mater. 18,265-269 (2006).
[CrossRef]

Juškaitis, R.

Kawata, S.

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, "3D Metallic Nanostructure Fabrication by Surfactant-Assisted Multiphoton-Induced Reduction," Small 5,1144-1148 (2009).
[PubMed]

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, "Active aberration correction for the writing of three-dimensional optical memory devices," Appl. Opt. 41,1374-1379 (2002).
[CrossRef] [PubMed]

Kim, T. N.

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffera, "Femtosecond laser-drilled capillary integrated into a microfluidic device," Appl. Phys. Lett. 86,201106 (2005).
[CrossRef]

Kleinfeld, D.

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffera, "Femtosecond laser-drilled capillary integrated into a microfluidic device," Appl. Phys. Lett. 86,201106 (2005).
[CrossRef]

Laczik, Z.

LaFratta, C. N.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, "Multiphoton Fabrication," Angew. Chem. Int. Ed. 46,6238-6258 (2007).
[CrossRef]

Laporta, P.

G. Della Valle, R. Osellame and P. Laporta, "Micromachining of photonic devices by femtosecond laser pulses," J. Opt. A 11,013001 (2009).

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, and P. Laporta, "Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching," Appl. Phys. Lett. 88,191107 (2006).
[CrossRef]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science 325,1513 (2009).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, "Photonic metamaterials by direct laser writing and silver chemical vapour deposition," Nature Materials 7,543-546 (2009).
[CrossRef]

Little, D. J.

Liu, W.

Marshall, G. D.

Maselli, V.

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, and P. Laporta, "Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching," Appl. Phys. Lett. 88,191107 (2006).
[CrossRef]

Mauclair, C.

Mermillod-Blondin, A.

Neil, M. A. A.

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, "Active aberration correction for the writing of three-dimensional optical memory devices," Appl. Opt. 41,1374-1379 (2002).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, R. Juškaitis and T. Wilson, "Adaptive aberration correction in a confocal microscope," PNAS 99,57885792 (2002).
[CrossRef]

M. A. A. Neil, M. J. Booth and T. Wilson, "New modal wave-front sensor: a theoretical analysis," J. Opt. Soc. Am. 17,1098-1107 (2000).
[CrossRef]

M. J. Booth, M. A. A. Neil and T. Wilson, "Aberration Correction for Confocal Imaging in Refractive Index Mismatched Media," J. Microsc. 192,90-98 (1998).
[CrossRef]

Nguyen, N. T.

Osellame, R.

G. Della Valle, R. Osellame and P. Laporta, "Micromachining of photonic devices by femtosecond laser pulses," J. Opt. A 11,013001 (2009).

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, and P. Laporta, "Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching," Appl. Phys. Lett. 88,191107 (2006).
[CrossRef]

Ozin, G. A.

S. Wong, M. Deubel, F. Prez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses," Adv. Mater. 18,265-269 (2006).
[CrossRef]

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, "Photonic metamaterials by direct laser writing and silver chemical vapour deposition," Nature Materials 7,543-546 (2009).
[CrossRef]

Prez-Willard, F.

S. Wong, M. Deubel, F. Prez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses," Adv. Mater. 18,265-269 (2006).
[CrossRef]

Ramponi, R.

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, and P. Laporta, "Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching," Appl. Phys. Lett. 88,191107 (2006).
[CrossRef]

Reid, D. T.

S. Campbell, S. M. F. Triphan, R. El-Agmy, A. H. Greenaway, and D. T. Reid, "Direct optimization of femtosecond laser ablation using adaptive wavefront shaping," J. Opt. A 9,11001104 (2007).

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science 325,1513 (2009).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, "Photonic metamaterials by direct laser writing and silver chemical vapour deposition," Nature Materials 7,543-546 (2009).
[CrossRef]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science 325,1513 (2009).
[CrossRef] [PubMed]

Saliminia, A.

Schaffera, C. B.

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffera, "Femtosecond laser-drilled capillary integrated into a microfluidic device," Appl. Phys. Lett. 86,201106 (2005).
[CrossRef]

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, "Photonic metamaterials by direct laser writing and silver chemical vapour deposition," Nature Materials 7,543-546 (2009).
[CrossRef]

Stoian, R.

Takeyasu, N.

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, "3D Metallic Nanostructure Fabrication by Surfactant-Assisted Multiphoton-Induced Reduction," Small 5,1144-1148 (2009).
[PubMed]

Tanaka, T.

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, "3D Metallic Nanostructure Fabrication by Surfactant-Assisted Multiphoton-Induced Reduction," Small 5,1144-1148 (2009).
[PubMed]

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, "Active aberration correction for the writing of three-dimensional optical memory devices," Appl. Opt. 41,1374-1379 (2002).
[CrossRef] [PubMed]

Thiel, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, "Photonic metamaterials by direct laser writing and silver chemical vapour deposition," Nature Materials 7,543-546 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science 325,1513 (2009).
[CrossRef] [PubMed]

Török, P.

Triphan, S. M. F.

S. Campbell, S. M. F. Triphan, R. El-Agmy, A. H. Greenaway, and D. T. Reid, "Direct optimization of femtosecond laser ablation using adaptive wavefront shaping," J. Opt. A 9,11001104 (2007).

Valle, R.

Varga, P.

von Freymann, G.

S. Wong, M. Deubel, F. Prez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses," Adv. Mater. 18,265-269 (2006).
[CrossRef]

Wegener, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, "Photonic metamaterials by direct laser writing and silver chemical vapour deposition," Nature Materials 7,543-546 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science 325,1513 (2009).
[CrossRef] [PubMed]

S. Wong, M. Deubel, F. Prez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses," Adv. Mater. 18,265-269 (2006).
[CrossRef]

Wilson, T.

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, "Active aberration correction for the writing of three-dimensional optical memory devices," Appl. Opt. 41,1374-1379 (2002).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, R. Juškaitis and T. Wilson, "Adaptive aberration correction in a confocal microscope," PNAS 99,57885792 (2002).
[CrossRef]

M. A. A. Neil, M. J. Booth and T. Wilson, "New modal wave-front sensor: a theoretical analysis," J. Opt. Soc. Am. 17,1098-1107 (2000).
[CrossRef]

M. J. Booth, M. A. A. Neil and T. Wilson, "Aberration Correction for Confocal Imaging in Refractive Index Mismatched Media," J. Microsc. 192,90-98 (1998).
[CrossRef]

Withford, M. J.

Wong, S.

S. Wong, M. Deubel, F. Prez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses," Adv. Mater. 18,265-269 (2006).
[CrossRef]

Adv. Mater. (1)

S. Wong, M. Deubel, F. Prez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses," Adv. Mater. 18,265-269 (2006).
[CrossRef]

Angew. Chem. Int. Ed. (1)

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, "Multiphoton Fabrication," Angew. Chem. Int. Ed. 46,6238-6258 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffera, "Femtosecond laser-drilled capillary integrated into a microfluidic device," Appl. Phys. Lett. 86,201106 (2005).
[CrossRef]

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, and P. Laporta, "Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching," Appl. Phys. Lett. 88,191107 (2006).
[CrossRef]

J. Microsc. (1)

M. J. Booth, M. A. A. Neil and T. Wilson, "Aberration Correction for Confocal Imaging in Refractive Index Mismatched Media," J. Microsc. 192,90-98 (1998).
[CrossRef]

J. Opt. A (2)

S. Campbell, S. M. F. Triphan, R. El-Agmy, A. H. Greenaway, and D. T. Reid, "Direct optimization of femtosecond laser ablation using adaptive wavefront shaping," J. Opt. A 9,11001104 (2007).

G. Della Valle, R. Osellame and P. Laporta, "Micromachining of photonic devices by femtosecond laser pulses," J. Opt. A 11,013001 (2009).

J. Opt. Soc. Am. (1)

M. A. A. Neil, M. J. Booth and T. Wilson, "New modal wave-front sensor: a theoretical analysis," J. Opt. Soc. Am. 17,1098-1107 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature Materials (1)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, "Photonic metamaterials by direct laser writing and silver chemical vapour deposition," Nature Materials 7,543-546 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phil. Trans. R. Soc. A (1)

M. J. Booth, "Adaptive optics in microscopy," Phil. Trans. R. Soc. A 365,2829-2843 (2007).
[CrossRef] [PubMed]

PNAS (1)

M. J. Booth, M. A. A. Neil, R. Juškaitis and T. Wilson, "Adaptive aberration correction in a confocal microscope," PNAS 99,57885792 (2002).
[CrossRef]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science 325,1513 (2009).
[CrossRef] [PubMed]

Small (1)

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, "3D Metallic Nanostructure Fabrication by Surfactant-Assisted Multiphoton-Induced Reduction," Small 5,1144-1148 (2009).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

a) Experimental set-up. The plasma emission is detected in backwards direction through a dichroic beamsplitter. The inset is a representative CCD image, showing the plasma emission and a written line of changed refractive index. b) Binary diffraction pattern for measuring trefoil. c) Laser intensity distribution in the focal plane, caused by b). The total signal in the marked regions is used as feedback for aberration estimation.

Fig. 2.
Fig. 2.

Graph: Plasma emission intensiy when different aberrations are applied using the SLM. Images: Defects created in the bulk of lead glass, with aberrations applied from -0.8 rad to 0.8 rad (rms value). For each mode, the most isotropic defect shape corresponds to the maximal plasma emission. The side length of each image corresponds to 5 μm.

Fig. 3.
Fig. 3.

a) Blue bars: Zernike coefficients of a randomly chosen aberration, which was introduced to the wavefront to test the correction method. Red bars: Measured coefficients after six cycles. b) Remaining phase aberration after subsequent correction cycles.

Fig. 4.
Fig. 4.

a) Widefield images of defects in fused silica, fabricated without and with aberration correction in various depths. b) The same regions imaged by the reflection confocal microscope. c) Defects written by single pulses of low energy at a nominal depth of 80 μm. The defects are highly localized when correction is applied (left half of the image and confocal image). Without correction, the laser intensity drops below the modification threshold.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Φ ρ θ = { 0 if mod 2 π ( cos θ + b i Z i ) < π π otherwise ,
Φ SA ( ρ ) = 2 π λ 0 d nom NA [ ( n 2 2 NA 2 ρ 2 ) 1 2 ( n 1 2 NA 2 ρ 2 ) 1 2 ] .
S ( ρ ) = 1 N [ ( 1 ρ 2 NA 2 / n 2 2 ) 1 2 M ] .
M = 1 8 π [ ( n 1 3 / NA 3 ) arcsin ( NA / n 1 ) ( n 1 2 / NA 2 2 ) ( 1 NA 2 / n 1 2 ) 1 2 ] ,
N = [ 1 15 π ( 5 3 NA 2 / n 1 2 ) ] 1 2 .

Metrics