Abstract

A color-separation system that angularly positions color LEDs to produce color separation and a lens array to focus this light onto the pixels is proposed. The LED rays from different incident angles are mapped into corresponding sub-pixel positions to efficiently display color image, which can be used to replace the absorbing color filter in the conventional liquid crystal layer. In this paper, the prototype backlight has been designed, fabricated and characterized. The measurement results of this module showed that a gain factor of transmission efficiency three times more than that of conventional color filters efficiency improvement and a larger color gamut are expected.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. V. Gunn and W. Haistead, “Diffractive color separation fabrication,” Proc. SPIE 3363, 198–208 (1998).
    [CrossRef]
  2. H. Dammann, “Color separation gratings,” Appl. Opt. 17(15), 2273–2279 (1978).
    [CrossRef] [PubMed]
  3. M. W. Farn, M. B. Stern, W. B. Veldkamp, and S. S. Medeiros, “Color separation by use of binary optics,” Opt. Lett. 18(15), 1214–1216 (1993).
    [CrossRef] [PubMed]
  4. C. Joubert, B. Loiseaux, A. Delboulbé, and J. P. Huignad, “Phase volume holographic optical components for high-brightness single-LCD projectors,” Appl. Opt. 36(20), 4761–4771 (1997).
    [CrossRef] [PubMed]
  5. R. P. Gale and G. J. Swanson, “Efficient illumination of color AMLCD projection displays using binary optical phase plates,” J. Soc. Inf. Disp. 5(4), 375–378 (1997).
    [CrossRef]
  6. Y. Taira, D. Nakano, H. Numata, A. Nishikai, S. Ono, F. Yamada, M. Suzuki, M. Noguchi, R. Singh, E. G. Colgan, “Low-power LCD using a novel optical system, ” SID 02 Digest 33, 1313–1315 (2002).
  7. Y. Taira, H. Numata, D. Nakano, K. Sueoka, F. Yamada, M. Suzuki, M. Noguchi, R. Singh, and E. G. Colgan, “Color filterless liquid crystal illuminated with LEDS,” SID 03 Digest 34, 1250–1253 (2003).
  8. D. K. G. de Boer, R. Caputo, H. J. Cornelissen, C. M. van Heesch, E. J. Hornix, and M. J. J. Jak, “Diffractive grating structures for colour-separating backlights,” Proc. SPIE 6196, 241 (2006).
  9. M. Xu, H. P. Urbach, and D. K. de Boer, “Simulations of birefringent gratings as polarizing color separator in backlight for flat-panel displays,” Opt. Express 15(9), 5789–5800 (2007).
    [CrossRef] [PubMed]
  10. R. Caputo, L. D. Sio, M. J. J. Jak, E. J. Hornix, D. K. G. De Boer, and H. J. Cornelissen, “Short period holographic structures for backlight display applications,” Opt. Express 15(17), 10540–10552 (2007).
    [CrossRef] [PubMed]
  11. H. H. Lin and M. H. Lu, “Design of Hybrid Grating for Color Filter Application in Liquid Crystal Display,” Jpn. J. Appl. Phys. 46(No. 8B), 5414–5418 (2007).
    [CrossRef]
  12. H.-H. Lin, C. H. Lee, and M.-H. Lu, “Dye-less color filter fabricated by roll-to-roll imprinting for liquid crystal display applications,” Opt. Express 17(15), 12397–12406 (2009).
    [CrossRef] [PubMed]
  13. A. Travis, T. Large, N. Emerton, and S. Bathiche, “Collimated light from a waveguide for a display backlight,” Opt. Express 17(22), 19714–19719 (2009).
    [CrossRef] [PubMed]
  14. Optics Software for Layout and Optimization (OSLO), Lambda Research Corporation, http://www.lambdares.com/ .
  15. Advanced System Analysis Program, (ASAP TM), Breault Research Organization, Inc., http://www.breault.com/index.php .
  16. Topcon Technohouse Corporation, http://www.topcon-techno.co.jp/eng/

2009

2007

2006

D. K. G. de Boer, R. Caputo, H. J. Cornelissen, C. M. van Heesch, E. J. Hornix, and M. J. J. Jak, “Diffractive grating structures for colour-separating backlights,” Proc. SPIE 6196, 241 (2006).

1998

T. V. Gunn and W. Haistead, “Diffractive color separation fabrication,” Proc. SPIE 3363, 198–208 (1998).
[CrossRef]

1997

R. P. Gale and G. J. Swanson, “Efficient illumination of color AMLCD projection displays using binary optical phase plates,” J. Soc. Inf. Disp. 5(4), 375–378 (1997).
[CrossRef]

C. Joubert, B. Loiseaux, A. Delboulbé, and J. P. Huignad, “Phase volume holographic optical components for high-brightness single-LCD projectors,” Appl. Opt. 36(20), 4761–4771 (1997).
[CrossRef] [PubMed]

1993

1978

Bathiche, S.

Caputo, R.

R. Caputo, L. D. Sio, M. J. J. Jak, E. J. Hornix, D. K. G. De Boer, and H. J. Cornelissen, “Short period holographic structures for backlight display applications,” Opt. Express 15(17), 10540–10552 (2007).
[CrossRef] [PubMed]

D. K. G. de Boer, R. Caputo, H. J. Cornelissen, C. M. van Heesch, E. J. Hornix, and M. J. J. Jak, “Diffractive grating structures for colour-separating backlights,” Proc. SPIE 6196, 241 (2006).

Cornelissen, H. J.

R. Caputo, L. D. Sio, M. J. J. Jak, E. J. Hornix, D. K. G. De Boer, and H. J. Cornelissen, “Short period holographic structures for backlight display applications,” Opt. Express 15(17), 10540–10552 (2007).
[CrossRef] [PubMed]

D. K. G. de Boer, R. Caputo, H. J. Cornelissen, C. M. van Heesch, E. J. Hornix, and M. J. J. Jak, “Diffractive grating structures for colour-separating backlights,” Proc. SPIE 6196, 241 (2006).

Dammann, H.

de Boer, D. K.

De Boer, D. K. G.

R. Caputo, L. D. Sio, M. J. J. Jak, E. J. Hornix, D. K. G. De Boer, and H. J. Cornelissen, “Short period holographic structures for backlight display applications,” Opt. Express 15(17), 10540–10552 (2007).
[CrossRef] [PubMed]

D. K. G. de Boer, R. Caputo, H. J. Cornelissen, C. M. van Heesch, E. J. Hornix, and M. J. J. Jak, “Diffractive grating structures for colour-separating backlights,” Proc. SPIE 6196, 241 (2006).

Delboulbé, A.

Emerton, N.

Farn, M. W.

Gale, R. P.

R. P. Gale and G. J. Swanson, “Efficient illumination of color AMLCD projection displays using binary optical phase plates,” J. Soc. Inf. Disp. 5(4), 375–378 (1997).
[CrossRef]

Gunn, T. V.

T. V. Gunn and W. Haistead, “Diffractive color separation fabrication,” Proc. SPIE 3363, 198–208 (1998).
[CrossRef]

Haistead, W.

T. V. Gunn and W. Haistead, “Diffractive color separation fabrication,” Proc. SPIE 3363, 198–208 (1998).
[CrossRef]

Hornix, E. J.

R. Caputo, L. D. Sio, M. J. J. Jak, E. J. Hornix, D. K. G. De Boer, and H. J. Cornelissen, “Short period holographic structures for backlight display applications,” Opt. Express 15(17), 10540–10552 (2007).
[CrossRef] [PubMed]

D. K. G. de Boer, R. Caputo, H. J. Cornelissen, C. M. van Heesch, E. J. Hornix, and M. J. J. Jak, “Diffractive grating structures for colour-separating backlights,” Proc. SPIE 6196, 241 (2006).

Huignad, J. P.

Jak, M. J. J.

R. Caputo, L. D. Sio, M. J. J. Jak, E. J. Hornix, D. K. G. De Boer, and H. J. Cornelissen, “Short period holographic structures for backlight display applications,” Opt. Express 15(17), 10540–10552 (2007).
[CrossRef] [PubMed]

D. K. G. de Boer, R. Caputo, H. J. Cornelissen, C. M. van Heesch, E. J. Hornix, and M. J. J. Jak, “Diffractive grating structures for colour-separating backlights,” Proc. SPIE 6196, 241 (2006).

Joubert, C.

Large, T.

Lee, C. H.

Lin, H. H.

H. H. Lin and M. H. Lu, “Design of Hybrid Grating for Color Filter Application in Liquid Crystal Display,” Jpn. J. Appl. Phys. 46(No. 8B), 5414–5418 (2007).
[CrossRef]

Lin, H.-H.

Loiseaux, B.

Lu, M. H.

H. H. Lin and M. H. Lu, “Design of Hybrid Grating for Color Filter Application in Liquid Crystal Display,” Jpn. J. Appl. Phys. 46(No. 8B), 5414–5418 (2007).
[CrossRef]

Lu, M.-H.

Medeiros, S. S.

Sio, L. D.

Stern, M. B.

Swanson, G. J.

R. P. Gale and G. J. Swanson, “Efficient illumination of color AMLCD projection displays using binary optical phase plates,” J. Soc. Inf. Disp. 5(4), 375–378 (1997).
[CrossRef]

Travis, A.

Urbach, H. P.

van Heesch, C. M.

D. K. G. de Boer, R. Caputo, H. J. Cornelissen, C. M. van Heesch, E. J. Hornix, and M. J. J. Jak, “Diffractive grating structures for colour-separating backlights,” Proc. SPIE 6196, 241 (2006).

Veldkamp, W. B.

Xu, M.

Appl. Opt.

J. Soc. Inf. Disp.

R. P. Gale and G. J. Swanson, “Efficient illumination of color AMLCD projection displays using binary optical phase plates,” J. Soc. Inf. Disp. 5(4), 375–378 (1997).
[CrossRef]

Jpn. J. Appl. Phys.

H. H. Lin and M. H. Lu, “Design of Hybrid Grating for Color Filter Application in Liquid Crystal Display,” Jpn. J. Appl. Phys. 46(No. 8B), 5414–5418 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

T. V. Gunn and W. Haistead, “Diffractive color separation fabrication,” Proc. SPIE 3363, 198–208 (1998).
[CrossRef]

D. K. G. de Boer, R. Caputo, H. J. Cornelissen, C. M. van Heesch, E. J. Hornix, and M. J. J. Jak, “Diffractive grating structures for colour-separating backlights,” Proc. SPIE 6196, 241 (2006).

Other

Y. Taira, D. Nakano, H. Numata, A. Nishikai, S. Ono, F. Yamada, M. Suzuki, M. Noguchi, R. Singh, E. G. Colgan, “Low-power LCD using a novel optical system, ” SID 02 Digest 33, 1313–1315 (2002).

Y. Taira, H. Numata, D. Nakano, K. Sueoka, F. Yamada, M. Suzuki, M. Noguchi, R. Singh, and E. G. Colgan, “Color filterless liquid crystal illuminated with LEDS,” SID 03 Digest 34, 1250–1253 (2003).

Optics Software for Layout and Optimization (OSLO), Lambda Research Corporation, http://www.lambdares.com/ .

Advanced System Analysis Program, (ASAP TM), Breault Research Organization, Inc., http://www.breault.com/index.php .

Topcon Technohouse Corporation, http://www.topcon-techno.co.jp/eng/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

For a backlight using grating to angularly separate color, a cylindrical lens array is usually adopted to form the color sub-pixels in the liquid crystal layer.

Fig. 2
Fig. 2

Color-separation backlight using a suitable arrangement of LEDs (a) Schematic configuration (b) Cross-section view.

Fig. 3
Fig. 3

An arrangement of R-G-B LEDs to a cylindrical lens performs the angular color-separation, but induces asymmetrical illumination in the light guide and color mixing after passing the cylindrical lens

Fig. 4
Fig. 4

A suitable arrangement of R-G-B-G-R LEDs to a cylindrical lens performs a feasible angular-color separation

Fig. 5
Fig. 5

(a) A cylindrical lens is applied to generate collimated beams with color LEDs being put at different positions on the focal plane. (b) The propagation directions of rays are redirected by the reflective cup.

Fig. 6
Fig. 6

Simulated distributions of the line pattern generated by our side emitting backlight, which is illuminated by a series of color LEDs on the focal plane of a cylindrical lens.

Fig. 7
Fig. 7

Geometry of the cylindrical lens array with respect to the pixels.

Fig. 8
Fig. 8

The analysis of the cylindrical lens array was by using OSLO with angular distribution of ± 16° for red rays, ± 8° for green rays and 0° for blue rays. The image plane without color crosstalk is between 610 ± 110μm from the cylindrical lens array.

Fig. 9
Fig. 9

Simulated results of system’s color distribution: (a) the footprint diagram, (b) the cross section of normalized intensity.

Fig. 10
Fig. 10

(a) The roller is processed by a roller cutter with the designed profile. (b) The roll-to-roll UV–cured imprinting process is applied to form a cylindrical lens array on a PET film. (c) A micro-scope photo of the cylindrical lens array, the pitch of each lens is 440μm.

Fig. 11
Fig. 11

The setup of the optical elements in the working prototype

Fig. 12
Fig. 12

(a) The optical measurement setup for color-separation by the proto-type. (b)The prototype backlight illuminated by the color LEDs.

Fig. 13
Fig. 13

Photograph of periodic line pattern of the module captured by a CCD camera

Fig. 14
Fig. 14

(a) Color points in CIE x y space, created by sampling the line pattern in Fig. 13. The white points indicate the color points of the individual LEDs and the white-line triangle shows the gamut of a common liquid crystal display. (b) Spectra of used red, green and blue LED. (c) Cross-sections of normalized intensity generated by the prototype.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L = f × tan θ
θ o = θ i
θ o = 2 Ω j θ i
 f c = P sub tan( Φ )

Metrics