Abstract

The ZnO-LiYbO2 hybrid phosphors were sintered by the solid-state reaction method, in which the intense near-infrared emission around 1000 nm due to Yb3+ 2F5/22F7/2 transition was obtained due to the efficient energy transfer from ZnO to Yb3+ ions. The growth of the LiYbO2 crystal and the formation of the diffusion layer between LiYbO2 and ZnO were confirmed by XRD, SEM and EDX studies. The high efficient energy transfer is benefited from the inter-diffusion of Li+, Yb3+ and Zn2+ in the diffusion region. The spectroscopy results clearly indicated that the ZnO-LiYbO2 hybrid phosphors can harvest the energy from near-UV photons in a broad wavelength region and effectively convert them into Yb3+ near-infrared emission.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ishizumi and Y. Kanemitsu, “Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method,” Appl. Phys. Lett. 86(25), 253106 (2005).
    [CrossRef]
  2. X. Wang, X. Kong, G. Shan, Y. Yu, Y. Sun, L. Feng, K. Chao, S. Lu, and Y. Li, “Luminescence spectroscopy and visible upconversion perperties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
    [CrossRef]
  3. J. C. Ronfard-Haret and J. Kossanyi, “Electro- and photoluminescence of the Tm3+-and Li+- doped ZnO ceramics. Influence of the sintering temperature,” Chem. Phys. 241(3), 339–349 (1999).
    [CrossRef]
  4. S. Bachir, K. Azuma, J. Kossanyi, P. Valat, and J. C. Ronfard-Haret, “Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare-earth ions into zinc oxide,” J. Lumin. 75(1), 35–49 (1997).
    [CrossRef]
  5. Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, Y. L. Song, and C. H. Wang, “Enhanced up converted photoluminescence in Er3+ and Yb3+ codoped ZnO nanocrystals with and without Li+ ions,” Opt. Commun. 281(21), 5448–5452 (2008).
    [CrossRef]
  6. F. Gu, S. F. Wang, M. K. Lv, G. J. Zhou, D. Xu, and D. R. Yuan, “Structure Evaluation and Highly Enhanced Luminescence of Dy 3+ -Doped ZnO Nanocrystals by Li + Doping via Combustion Method, ” Langmuir 20(9), 3528–3531 (2004).
    [CrossRef]
  7. Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 µm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
    [CrossRef]
  8. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073 (2009).
    [CrossRef]
  9. S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
    [CrossRef]
  10. S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
    [CrossRef] [PubMed]
  11. Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative donwnconversion in GdAL3(BO3)3:RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
    [CrossRef]
  12. Y. Hashimoto, M. Wakeshima, K. Matsuhira, Y. Hinatsu, and Y. Ishii, “Structures and magnetic properties of ternary lithium oxides LiRO2 (R=Rare Earths),” Chem. Mater. 14(8), 3245–3251 (2002).
    [CrossRef]
  13. A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation,” J. Phys. Chem. B 104(8), 1715–1723 (2000).
    [CrossRef]
  14. A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “Identification of the transifition responsible for the visible emission in ZnO using quantum size effects,” J. Lumin. 90(3-4), 123–128 (2000).
    [CrossRef]
  15. Y. X. Liu, Y. C. Liu, C. L. Shao, and R. Mu, “Excitonic properties of ZnO nanocrystalline films prepared by oxidation of zinc-implanted silica,” J. Phys. D Appl. Phys. 37(21), 3025–3029 (2004).
    [CrossRef]
  16. S. Ye, N. Jiang, J. R. Qiu, J. Appl. Phys. to be submitted.
  17. W. Y. Jia, K. Monge, and F. Fernandez, “Energy transfer from the host to Eu3+ in ZnO,” Opt. Mater. 23(1-2), 27–32 (2003).
    [CrossRef]

2009 (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073 (2009).
[CrossRef]

2008 (3)

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, Y. L. Song, and C. H. Wang, “Enhanced up converted photoluminescence in Er3+ and Yb3+ codoped ZnO nanocrystals with and without Li+ ions,” Opt. Commun. 281(21), 5448–5452 (2008).
[CrossRef]

2007 (1)

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative donwnconversion in GdAL3(BO3)3:RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
[CrossRef]

2005 (2)

A. Ishizumi and Y. Kanemitsu, “Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method,” Appl. Phys. Lett. 86(25), 253106 (2005).
[CrossRef]

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 µm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[CrossRef]

2004 (3)

F. Gu, S. F. Wang, M. K. Lv, G. J. Zhou, D. Xu, and D. R. Yuan, “Structure Evaluation and Highly Enhanced Luminescence of Dy 3+ -Doped ZnO Nanocrystals by Li + Doping via Combustion Method, ” Langmuir 20(9), 3528–3531 (2004).
[CrossRef]

Y. X. Liu, Y. C. Liu, C. L. Shao, and R. Mu, “Excitonic properties of ZnO nanocrystalline films prepared by oxidation of zinc-implanted silica,” J. Phys. D Appl. Phys. 37(21), 3025–3029 (2004).
[CrossRef]

X. Wang, X. Kong, G. Shan, Y. Yu, Y. Sun, L. Feng, K. Chao, S. Lu, and Y. Li, “Luminescence spectroscopy and visible upconversion perperties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[CrossRef]

2003 (1)

W. Y. Jia, K. Monge, and F. Fernandez, “Energy transfer from the host to Eu3+ in ZnO,” Opt. Mater. 23(1-2), 27–32 (2003).
[CrossRef]

2002 (1)

Y. Hashimoto, M. Wakeshima, K. Matsuhira, Y. Hinatsu, and Y. Ishii, “Structures and magnetic properties of ternary lithium oxides LiRO2 (R=Rare Earths),” Chem. Mater. 14(8), 3245–3251 (2002).
[CrossRef]

2000 (2)

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation,” J. Phys. Chem. B 104(8), 1715–1723 (2000).
[CrossRef]

A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “Identification of the transifition responsible for the visible emission in ZnO using quantum size effects,” J. Lumin. 90(3-4), 123–128 (2000).
[CrossRef]

1999 (1)

J. C. Ronfard-Haret and J. Kossanyi, “Electro- and photoluminescence of the Tm3+-and Li+- doped ZnO ceramics. Influence of the sintering temperature,” Chem. Phys. 241(3), 339–349 (1999).
[CrossRef]

1997 (1)

S. Bachir, K. Azuma, J. Kossanyi, P. Valat, and J. C. Ronfard-Haret, “Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare-earth ions into zinc oxide,” J. Lumin. 75(1), 35–49 (1997).
[CrossRef]

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073 (2009).
[CrossRef]

Ayukawa, T.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 µm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[CrossRef]

Azuma, K.

S. Bachir, K. Azuma, J. Kossanyi, P. Valat, and J. C. Ronfard-Haret, “Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare-earth ions into zinc oxide,” J. Lumin. 75(1), 35–49 (1997).
[CrossRef]

Bachir, S.

S. Bachir, K. Azuma, J. Kossanyi, P. Valat, and J. C. Ronfard-Haret, “Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare-earth ions into zinc oxide,” J. Lumin. 75(1), 35–49 (1997).
[CrossRef]

Bai, Y. F.

Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, Y. L. Song, and C. H. Wang, “Enhanced up converted photoluminescence in Er3+ and Yb3+ codoped ZnO nanocrystals with and without Li+ ions,” Opt. Commun. 281(21), 5448–5452 (2008).
[CrossRef]

Chao, K.

X. Wang, X. Kong, G. Shan, Y. Yu, Y. Sun, L. Feng, K. Chao, S. Lu, and Y. Li, “Luminescence spectroscopy and visible upconversion perperties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[CrossRef]

Chen, J. X.

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

Feng, L.

X. Wang, X. Kong, G. Shan, Y. Yu, Y. Sun, L. Feng, K. Chao, S. Lu, and Y. Li, “Luminescence spectroscopy and visible upconversion perperties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[CrossRef]

Fernandez, F.

W. Y. Jia, K. Monge, and F. Fernandez, “Energy transfer from the host to Eu3+ in ZnO,” Opt. Mater. 23(1-2), 27–32 (2003).
[CrossRef]

Gu, F.

F. Gu, S. F. Wang, M. K. Lv, G. J. Zhou, D. Xu, and D. R. Yuan, “Structure Evaluation and Highly Enhanced Luminescence of Dy 3+ -Doped ZnO Nanocrystals by Li + Doping via Combustion Method, ” Langmuir 20(9), 3528–3531 (2004).
[CrossRef]

Hashimoto, Y.

Y. Hashimoto, M. Wakeshima, K. Matsuhira, Y. Hinatsu, and Y. Ishii, “Structures and magnetic properties of ternary lithium oxides LiRO2 (R=Rare Earths),” Chem. Mater. 14(8), 3245–3251 (2002).
[CrossRef]

Hinatsu, Y.

Y. Hashimoto, M. Wakeshima, K. Matsuhira, Y. Hinatsu, and Y. Ishii, “Structures and magnetic properties of ternary lithium oxides LiRO2 (R=Rare Earths),” Chem. Mater. 14(8), 3245–3251 (2002).
[CrossRef]

Ishii, Y.

Y. Hashimoto, M. Wakeshima, K. Matsuhira, Y. Hinatsu, and Y. Ishii, “Structures and magnetic properties of ternary lithium oxides LiRO2 (R=Rare Earths),” Chem. Mater. 14(8), 3245–3251 (2002).
[CrossRef]

Ishizumi, A.

A. Ishizumi and Y. Kanemitsu, “Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method,” Appl. Phys. Lett. 86(25), 253106 (2005).
[CrossRef]

Jia, W. Y.

W. Y. Jia, K. Monge, and F. Fernandez, “Energy transfer from the host to Eu3+ in ZnO,” Opt. Mater. 23(1-2), 27–32 (2003).
[CrossRef]

Jiang, Z. H.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative donwnconversion in GdAL3(BO3)3:RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
[CrossRef]

Kanemitsu, Y.

A. Ishizumi and Y. Kanemitsu, “Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method,” Appl. Phys. Lett. 86(25), 253106 (2005).
[CrossRef]

Koizumi, A.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 µm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[CrossRef]

Komori, T.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 µm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[CrossRef]

Kong, X.

X. Wang, X. Kong, G. Shan, Y. Yu, Y. Sun, L. Feng, K. Chao, S. Lu, and Y. Li, “Luminescence spectroscopy and visible upconversion perperties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[CrossRef]

Kossanyi, J.

J. C. Ronfard-Haret and J. Kossanyi, “Electro- and photoluminescence of the Tm3+-and Li+- doped ZnO ceramics. Influence of the sintering temperature,” Chem. Phys. 241(3), 339–349 (1999).
[CrossRef]

S. Bachir, K. Azuma, J. Kossanyi, P. Valat, and J. C. Ronfard-Haret, “Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare-earth ions into zinc oxide,” J. Lumin. 75(1), 35–49 (1997).
[CrossRef]

Lakshminarayana, G.

Li, Y.

X. Wang, X. Kong, G. Shan, Y. Yu, Y. Sun, L. Feng, K. Chao, S. Lu, and Y. Li, “Luminescence spectroscopy and visible upconversion perperties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[CrossRef]

Liu, Y. C.

Y. X. Liu, Y. C. Liu, C. L. Shao, and R. Mu, “Excitonic properties of ZnO nanocrystalline films prepared by oxidation of zinc-implanted silica,” J. Phys. D Appl. Phys. 37(21), 3025–3029 (2004).
[CrossRef]

Liu, Y. X.

Y. X. Liu, Y. C. Liu, C. L. Shao, and R. Mu, “Excitonic properties of ZnO nanocrystalline films prepared by oxidation of zinc-implanted silica,” J. Phys. D Appl. Phys. 37(21), 3025–3029 (2004).
[CrossRef]

Lu, S.

X. Wang, X. Kong, G. Shan, Y. Yu, Y. Sun, L. Feng, K. Chao, S. Lu, and Y. Li, “Luminescence spectroscopy and visible upconversion perperties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[CrossRef]

Luo, J.

S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

Lv, M. K.

F. Gu, S. F. Wang, M. K. Lv, G. J. Zhou, D. Xu, and D. R. Yuan, “Structure Evaluation and Highly Enhanced Luminescence of Dy 3+ -Doped ZnO Nanocrystals by Li + Doping via Combustion Method, ” Langmuir 20(9), 3528–3531 (2004).
[CrossRef]

Matsuhira, K.

Y. Hashimoto, M. Wakeshima, K. Matsuhira, Y. Hinatsu, and Y. Ishii, “Structures and magnetic properties of ternary lithium oxides LiRO2 (R=Rare Earths),” Chem. Mater. 14(8), 3245–3251 (2002).
[CrossRef]

Meijerink, A.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073 (2009).
[CrossRef]

A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “Identification of the transifition responsible for the visible emission in ZnO using quantum size effects,” J. Lumin. 90(3-4), 123–128 (2000).
[CrossRef]

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation,” J. Phys. Chem. B 104(8), 1715–1723 (2000).
[CrossRef]

Meulenkamp, E. A.

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation,” J. Phys. Chem. B 104(8), 1715–1723 (2000).
[CrossRef]

A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “Identification of the transifition responsible for the visible emission in ZnO using quantum size effects,” J. Lumin. 90(3-4), 123–128 (2000).
[CrossRef]

Monge, K.

W. Y. Jia, K. Monge, and F. Fernandez, “Energy transfer from the host to Eu3+ in ZnO,” Opt. Mater. 23(1-2), 27–32 (2003).
[CrossRef]

Morinaga, M.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 µm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[CrossRef]

Mu, R.

Y. X. Liu, Y. C. Liu, C. L. Shao, and R. Mu, “Excitonic properties of ZnO nanocrystalline films prepared by oxidation of zinc-implanted silica,” J. Phys. D Appl. Phys. 37(21), 3025–3029 (2004).
[CrossRef]

Qiu, J. R.

S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

Ronfard-Haret, J. C.

J. C. Ronfard-Haret and J. Kossanyi, “Electro- and photoluminescence of the Tm3+-and Li+- doped ZnO ceramics. Influence of the sintering temperature,” Chem. Phys. 241(3), 339–349 (1999).
[CrossRef]

S. Bachir, K. Azuma, J. Kossanyi, P. Valat, and J. C. Ronfard-Haret, “Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare-earth ions into zinc oxide,” J. Lumin. 75(1), 35–49 (1997).
[CrossRef]

Shan, G.

X. Wang, X. Kong, G. Shan, Y. Yu, Y. Sun, L. Feng, K. Chao, S. Lu, and Y. Li, “Luminescence spectroscopy and visible upconversion perperties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[CrossRef]

Shao, C. L.

Y. X. Liu, Y. C. Liu, C. L. Shao, and R. Mu, “Excitonic properties of ZnO nanocrystalline films prepared by oxidation of zinc-implanted silica,” J. Phys. D Appl. Phys. 37(21), 3025–3029 (2004).
[CrossRef]

Song, Y. L.

Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, Y. L. Song, and C. H. Wang, “Enhanced up converted photoluminescence in Er3+ and Yb3+ codoped ZnO nanocrystals with and without Li+ ions,” Opt. Commun. 281(21), 5448–5452 (2008).
[CrossRef]

Sun, Y.

X. Wang, X. Kong, G. Shan, Y. Yu, Y. Sun, L. Feng, K. Chao, S. Lu, and Y. Li, “Luminescence spectroscopy and visible upconversion perperties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[CrossRef]

Takeda, Y.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 µm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[CrossRef]

Valat, P.

S. Bachir, K. Azuma, J. Kossanyi, P. Valat, and J. C. Ronfard-Haret, “Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare-earth ions into zinc oxide,” J. Lumin. 75(1), 35–49 (1997).
[CrossRef]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073 (2009).
[CrossRef]

Van Dijken, A.

A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “Identification of the transifition responsible for the visible emission in ZnO using quantum size effects,” J. Lumin. 90(3-4), 123–128 (2000).
[CrossRef]

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation,” J. Phys. Chem. B 104(8), 1715–1723 (2000).
[CrossRef]

Vanmaekelbergh, D.

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation,” J. Phys. Chem. B 104(8), 1715–1723 (2000).
[CrossRef]

A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “Identification of the transifition responsible for the visible emission in ZnO using quantum size effects,” J. Lumin. 90(3-4), 123–128 (2000).
[CrossRef]

Wakeshima, M.

Y. Hashimoto, M. Wakeshima, K. Matsuhira, Y. Hinatsu, and Y. Ishii, “Structures and magnetic properties of ternary lithium oxides LiRO2 (R=Rare Earths),” Chem. Mater. 14(8), 3245–3251 (2002).
[CrossRef]

Wang, C. H.

Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, Y. L. Song, and C. H. Wang, “Enhanced up converted photoluminescence in Er3+ and Yb3+ codoped ZnO nanocrystals with and without Li+ ions,” Opt. Commun. 281(21), 5448–5452 (2008).
[CrossRef]

Wang, S. F.

F. Gu, S. F. Wang, M. K. Lv, G. J. Zhou, D. Xu, and D. R. Yuan, “Structure Evaluation and Highly Enhanced Luminescence of Dy 3+ -Doped ZnO Nanocrystals by Li + Doping via Combustion Method, ” Langmuir 20(9), 3528–3531 (2004).
[CrossRef]

Wang, X.

X. Wang, X. Kong, G. Shan, Y. Yu, Y. Sun, L. Feng, K. Chao, S. Lu, and Y. Li, “Luminescence spectroscopy and visible upconversion perperties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[CrossRef]

Wang, Y. X.

Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, Y. L. Song, and C. H. Wang, “Enhanced up converted photoluminescence in Er3+ and Yb3+ codoped ZnO nanocrystals with and without Li+ ions,” Opt. Commun. 281(21), 5448–5452 (2008).
[CrossRef]

Xu, D.

F. Gu, S. F. Wang, M. K. Lv, G. J. Zhou, D. Xu, and D. R. Yuan, “Structure Evaluation and Highly Enhanced Luminescence of Dy 3+ -Doped ZnO Nanocrystals by Li + Doping via Combustion Method, ” Langmuir 20(9), 3528–3531 (2004).
[CrossRef]

Yang, G. F.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative donwnconversion in GdAL3(BO3)3:RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
[CrossRef]

Yang, K.

Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, Y. L. Song, and C. H. Wang, “Enhanced up converted photoluminescence in Er3+ and Yb3+ codoped ZnO nanocrystals with and without Li+ ions,” Opt. Commun. 281(21), 5448–5452 (2008).
[CrossRef]

Ye, S.

S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

Yu, Y.

X. Wang, X. Kong, G. Shan, Y. Yu, Y. Sun, L. Feng, K. Chao, S. Lu, and Y. Li, “Luminescence spectroscopy and visible upconversion perperties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[CrossRef]

Yuan, D. R.

F. Gu, S. F. Wang, M. K. Lv, G. J. Zhou, D. Xu, and D. R. Yuan, “Structure Evaluation and Highly Enhanced Luminescence of Dy 3+ -Doped ZnO Nanocrystals by Li + Doping via Combustion Method, ” Langmuir 20(9), 3528–3531 (2004).
[CrossRef]

Yukawa, H.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 µm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[CrossRef]

Zhang, Q. Y.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative donwnconversion in GdAL3(BO3)3:RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
[CrossRef]

Zhang, X. R.

Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, Y. L. Song, and C. H. Wang, “Enhanced up converted photoluminescence in Er3+ and Yb3+ codoped ZnO nanocrystals with and without Li+ ions,” Opt. Commun. 281(21), 5448–5452 (2008).
[CrossRef]

Zhou, G. J.

F. Gu, S. F. Wang, M. K. Lv, G. J. Zhou, D. Xu, and D. R. Yuan, “Structure Evaluation and Highly Enhanced Luminescence of Dy 3+ -Doped ZnO Nanocrystals by Li + Doping via Combustion Method, ” Langmuir 20(9), 3528–3531 (2004).
[CrossRef]

Zhou, Z.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 µm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[CrossRef]

Zhu, B.

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

Adv. Mater. (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073 (2009).
[CrossRef]

Appl. Phys. Lett. (4)

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 µm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[CrossRef]

A. Ishizumi and Y. Kanemitsu, “Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method,” Appl. Phys. Lett. 86(25), 253106 (2005).
[CrossRef]

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative donwnconversion in GdAL3(BO3)3:RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
[CrossRef]

Chem. Mater. (1)

Y. Hashimoto, M. Wakeshima, K. Matsuhira, Y. Hinatsu, and Y. Ishii, “Structures and magnetic properties of ternary lithium oxides LiRO2 (R=Rare Earths),” Chem. Mater. 14(8), 3245–3251 (2002).
[CrossRef]

Chem. Phys. (1)

J. C. Ronfard-Haret and J. Kossanyi, “Electro- and photoluminescence of the Tm3+-and Li+- doped ZnO ceramics. Influence of the sintering temperature,” Chem. Phys. 241(3), 339–349 (1999).
[CrossRef]

J. Lumin. (2)

S. Bachir, K. Azuma, J. Kossanyi, P. Valat, and J. C. Ronfard-Haret, “Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare-earth ions into zinc oxide,” J. Lumin. 75(1), 35–49 (1997).
[CrossRef]

A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “Identification of the transifition responsible for the visible emission in ZnO using quantum size effects,” J. Lumin. 90(3-4), 123–128 (2000).
[CrossRef]

J. Phys. Chem. B (2)

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation,” J. Phys. Chem. B 104(8), 1715–1723 (2000).
[CrossRef]

X. Wang, X. Kong, G. Shan, Y. Yu, Y. Sun, L. Feng, K. Chao, S. Lu, and Y. Li, “Luminescence spectroscopy and visible upconversion perperties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108(48), 18408–18413 (2004).
[CrossRef]

J. Phys. D Appl. Phys. (1)

Y. X. Liu, Y. C. Liu, C. L. Shao, and R. Mu, “Excitonic properties of ZnO nanocrystalline films prepared by oxidation of zinc-implanted silica,” J. Phys. D Appl. Phys. 37(21), 3025–3029 (2004).
[CrossRef]

Langmuir (1)

F. Gu, S. F. Wang, M. K. Lv, G. J. Zhou, D. Xu, and D. R. Yuan, “Structure Evaluation and Highly Enhanced Luminescence of Dy 3+ -Doped ZnO Nanocrystals by Li + Doping via Combustion Method, ” Langmuir 20(9), 3528–3531 (2004).
[CrossRef]

Opt. Commun. (1)

Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, Y. L. Song, and C. H. Wang, “Enhanced up converted photoluminescence in Er3+ and Yb3+ codoped ZnO nanocrystals with and without Li+ ions,” Opt. Commun. 281(21), 5448–5452 (2008).
[CrossRef]

Opt. Express (1)

Opt. Mater. (1)

W. Y. Jia, K. Monge, and F. Fernandez, “Energy transfer from the host to Eu3+ in ZnO,” Opt. Mater. 23(1-2), 27–32 (2003).
[CrossRef]

Other (1)

S. Ye, N. Jiang, J. R. Qiu, J. Appl. Phys. to be submitted.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

X-ray diffraction patterns of (a) pure ZnO, (b) 1mol% Yb2O3 mixed ZnO, (c) 1 mol% Yb2O3-1 mol% Li2O mixed ZnO.

Fig. 2
Fig. 2

SEM images of (a): ZnO mixed with 1 mol% Yb2O3. (b): ZnO-LiYbO2 hybrid phosphor (with starting concentration of 1 mol% Yb2O3 and Li2O each). (c): enlarged image showing two Yb2O3 crystals adsorbed to ZnO and one LiYbO2 crystal embedded on ZnO. (d): fracture surface between the ZnO substrate and a breakaway LiYbO2.

Fig. 3
Fig. 3

Excitation and emission spectra for (a): 1 mol% Yb2O3 mixed ZnO, λem=500 nm (black line), λem=980 nm (red line), and λex=380 nm (blue line). (b) ZnO-LiYbO2 hybrid phosphor (with starting concentration of 1 mol% Yb2O3 and Li2O each), λem=540 nm (black line), λem = 980 nm (red line), and λex=395 nm (blue lines). (c): pure ZnO (orange line) and 1 mol% Li2O doped ZnO (green line), λem=500 nm, λex=390 and 350 nm, respectively.

Fig. 4
Fig. 4

Luminescence decay of the SA emission with 350 nm excitation in pure ZnO and ZnO-LiYbO2 hybrid phosphor, respectively.

Metrics