Abstract

A widely tunable erbium-doped all-fiber laser has been demonstrated. The tunable mechanism is based on a novel tunable filter using multimode interference effects (MMI). The tunable MMI filter was applied to fabricate a tunable erbium-doped fiber laser via a standard ring cavity. A tuning range of 60 nm was obtained, ranging from 1549 nm to 1609 nm, with a signal to noise ratio of 40 dB. The tunable MMI filter mechanism is very simple and inexpensive, but also quite efficient as a wavelength tunable filter.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Chen, F. Babin, M. Leblanc, G. He, and G. W. Schinn, “70-nm tunable single-longitudinal mode erbium-doped fiber laser,” Proc. SPIE 4833, 956 (2003).
    [CrossRef]
  2. L. Xia, P. Shum, Y. X. Wang, and T. H. Cheng, “Stable triple-wavelength fiber ring laser with ultranarrow wavelength spacing using a triple-transmission-band fiber Bragg grating filter,” IEEE Photon. Technol. Lett. 18(20), 2162–2164 (2006).
    [CrossRef]
  3. C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratgin over 90nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15(4), 557–559 (2003).
    [CrossRef]
  4. M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibser, “Fiber Bragg grating compression-tuned over 110nm,” Electron. Lett. 39(6), 509–511 (2003).
    [CrossRef]
  5. Z. Zhang, J. Wu, K. Xu, X. Hong, and J. Lin, “Tunable multiwavelength SOA fiber laser with ultra-narrow wavelength spacing based on nonlinear polarization rotation,” Opt. Express 17(19), 17200–17205 (2009).
    [CrossRef] [PubMed]
  6. M. J. Chawki, I. Valiente, R. Auffret, and V. Tholey, “All fibre, 1.5 mu m widely tunable single frequency and narrow linewidth semiconductor ring laser with fibre Fabry Perot filter,” Electron. Lett. 29(23), 2034–2035 (1993).
    [CrossRef]
  7. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [CrossRef]
  8. L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
    [CrossRef]
  9. D. A. May-Arrioja, P. LiKamWa,, J. J. Sanchez-Mondragon, R. Selvas-Aguilar, and I. Torres-Gomez, “A reconfigurable multimode interference splitter for sensing applications,” Meas. Sci. Technol. 18(10), 3241–3246 (2007).
    [CrossRef]
  10. M. P. Earnshaw and D. W. E. Allsopp, “Semiconductor space switches based on multimode interference couplers,” J. Lightwave Technol. 20(4), 643–650 (2002).
    [CrossRef]
  11. D. A. May-Arrioja, N. Bickel, and P. LiKamWa, “Robust 2x2 multimode interference optical switch,” Opt. Quantum Electron. 38(7), 557–566 (2006).
    [CrossRef]
  12. A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15(8), 1129–1131 (2003).
    [CrossRef]
  13. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31(17), 2547–2549 (2006).
    [CrossRef] [PubMed]
  14. X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett. 33(9), 908–910 (2008).
    [CrossRef] [PubMed]
  15. R. Selvas, I. Torres-Gomez, A. Martinez-Rios, J. Alvarez-Chavez, D. May-Arrioja, P. Likamwa, A. Mehta, and E. Johnson, “Wavelength tuning of fiber lasers using multimode interference effects,” Opt. Express 13(23), 9439–9445 (2005).
    [CrossRef] [PubMed]
  16. G. Anzueto-Sánchez, A. Martínez-Ríos, D. A. May-Arrioja, I. Torres-Gómez, R. Selvas-Aguilar, and J. Alvárez-Chávez, “Enhanced tuning mechanism in fiber laser based on multimode interferente effects,” Electron. Lett. 42(23), 1337–1338 (2006).
    [CrossRef]
  17. W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22(2), 469–477 (2004).
    [CrossRef]

2009 (1)

2008 (1)

2007 (1)

D. A. May-Arrioja, P. LiKamWa,, J. J. Sanchez-Mondragon, R. Selvas-Aguilar, and I. Torres-Gomez, “A reconfigurable multimode interference splitter for sensing applications,” Meas. Sci. Technol. 18(10), 3241–3246 (2007).
[CrossRef]

2006 (4)

D. A. May-Arrioja, N. Bickel, and P. LiKamWa, “Robust 2x2 multimode interference optical switch,” Opt. Quantum Electron. 38(7), 557–566 (2006).
[CrossRef]

L. Xia, P. Shum, Y. X. Wang, and T. H. Cheng, “Stable triple-wavelength fiber ring laser with ultranarrow wavelength spacing using a triple-transmission-band fiber Bragg grating filter,” IEEE Photon. Technol. Lett. 18(20), 2162–2164 (2006).
[CrossRef]

W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31(17), 2547–2549 (2006).
[CrossRef] [PubMed]

G. Anzueto-Sánchez, A. Martínez-Ríos, D. A. May-Arrioja, I. Torres-Gómez, R. Selvas-Aguilar, and J. Alvárez-Chávez, “Enhanced tuning mechanism in fiber laser based on multimode interferente effects,” Electron. Lett. 42(23), 1337–1338 (2006).
[CrossRef]

2005 (1)

2004 (1)

2003 (4)

H. Chen, F. Babin, M. Leblanc, G. He, and G. W. Schinn, “70-nm tunable single-longitudinal mode erbium-doped fiber laser,” Proc. SPIE 4833, 956 (2003).
[CrossRef]

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratgin over 90nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibser, “Fiber Bragg grating compression-tuned over 110nm,” Electron. Lett. 39(6), 509–511 (2003).
[CrossRef]

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15(8), 1129–1131 (2003).
[CrossRef]

2002 (1)

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

1993 (1)

M. J. Chawki, I. Valiente, R. Auffret, and V. Tholey, “All fibre, 1.5 mu m widely tunable single frequency and narrow linewidth semiconductor ring laser with fibre Fabry Perot filter,” Electron. Lett. 29(23), 2034–2035 (1993).
[CrossRef]

1992 (1)

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[CrossRef]

Allsopp, D. W. E.

Alvarez-Chavez, J.

Alvárez-Chávez, J.

G. Anzueto-Sánchez, A. Martínez-Ríos, D. A. May-Arrioja, I. Torres-Gómez, R. Selvas-Aguilar, and J. Alvárez-Chávez, “Enhanced tuning mechanism in fiber laser based on multimode interferente effects,” Electron. Lett. 42(23), 1337–1338 (2006).
[CrossRef]

Anzueto-Sánchez, G.

G. Anzueto-Sánchez, A. Martínez-Ríos, D. A. May-Arrioja, I. Torres-Gómez, R. Selvas-Aguilar, and J. Alvárez-Chávez, “Enhanced tuning mechanism in fiber laser based on multimode interferente effects,” Electron. Lett. 42(23), 1337–1338 (2006).
[CrossRef]

Auffret, R.

M. J. Chawki, I. Valiente, R. Auffret, and V. Tholey, “All fibre, 1.5 mu m widely tunable single frequency and narrow linewidth semiconductor ring laser with fibre Fabry Perot filter,” Electron. Lett. 29(23), 2034–2035 (1993).
[CrossRef]

Babin, F.

H. Chen, F. Babin, M. Leblanc, G. He, and G. W. Schinn, “70-nm tunable single-longitudinal mode erbium-doped fiber laser,” Proc. SPIE 4833, 956 (2003).
[CrossRef]

Bickel, N.

D. A. May-Arrioja, N. Bickel, and P. LiKamWa, “Robust 2x2 multimode interference optical switch,” Opt. Quantum Electron. 38(7), 557–566 (2006).
[CrossRef]

Butler, S. A.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibser, “Fiber Bragg grating compression-tuned over 110nm,” Electron. Lett. 39(6), 509–511 (2003).
[CrossRef]

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratgin over 90nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

Chawki, M. J.

M. J. Chawki, I. Valiente, R. Auffret, and V. Tholey, “All fibre, 1.5 mu m widely tunable single frequency and narrow linewidth semiconductor ring laser with fibre Fabry Perot filter,” Electron. Lett. 29(23), 2034–2035 (1993).
[CrossRef]

Chen, H.

H. Chen, F. Babin, M. Leblanc, G. He, and G. W. Schinn, “70-nm tunable single-longitudinal mode erbium-doped fiber laser,” Proc. SPIE 4833, 956 (2003).
[CrossRef]

Cheng, T. H.

L. Xia, P. Shum, Y. X. Wang, and T. H. Cheng, “Stable triple-wavelength fiber ring laser with ultranarrow wavelength spacing using a triple-transmission-band fiber Bragg grating filter,” IEEE Photon. Technol. Lett. 18(20), 2162–2164 (2006).
[CrossRef]

Dubost, A. H.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[CrossRef]

Earnshaw, M. P.

Goh, C. S.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratgin over 90nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibser, “Fiber Bragg grating compression-tuned over 110nm,” Electron. Lett. 39(6), 509–511 (2003).
[CrossRef]

Gu, X.

He, G.

H. Chen, F. Babin, M. Leblanc, G. He, and G. W. Schinn, “70-nm tunable single-longitudinal mode erbium-doped fiber laser,” Proc. SPIE 4833, 956 (2003).
[CrossRef]

Hong, X.

Ibsen, M.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratgin over 90nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

Ibser, M.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibser, “Fiber Bragg grating compression-tuned over 110nm,” Electron. Lett. 39(6), 509–511 (2003).
[CrossRef]

Johnson, E.

Johnson, E. G.

W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22(2), 469–477 (2004).
[CrossRef]

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15(8), 1129–1131 (2003).
[CrossRef]

Kikuchi, K.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibser, “Fiber Bragg grating compression-tuned over 110nm,” Electron. Lett. 39(6), 509–511 (2003).
[CrossRef]

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratgin over 90nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

Leblanc, M.

H. Chen, F. Babin, M. Leblanc, G. He, and G. W. Schinn, “70-nm tunable single-longitudinal mode erbium-doped fiber laser,” Proc. SPIE 4833, 956 (2003).
[CrossRef]

Li, H.

Li, L.

LiKamWa, P.

LiKamWa,, P.

D. A. May-Arrioja, P. LiKamWa,, J. J. Sanchez-Mondragon, R. Selvas-Aguilar, and I. Torres-Gomez, “A reconfigurable multimode interference splitter for sensing applications,” Meas. Sci. Technol. 18(10), 3241–3246 (2007).
[CrossRef]

Lin, J.

Martinez-Rios, A.

Martínez-Ríos, A.

G. Anzueto-Sánchez, A. Martínez-Ríos, D. A. May-Arrioja, I. Torres-Gómez, R. Selvas-Aguilar, and J. Alvárez-Chávez, “Enhanced tuning mechanism in fiber laser based on multimode interferente effects,” Electron. Lett. 42(23), 1337–1338 (2006).
[CrossRef]

May-Arrioja, D.

May-Arrioja, D. A.

D. A. May-Arrioja, P. LiKamWa,, J. J. Sanchez-Mondragon, R. Selvas-Aguilar, and I. Torres-Gomez, “A reconfigurable multimode interference splitter for sensing applications,” Meas. Sci. Technol. 18(10), 3241–3246 (2007).
[CrossRef]

G. Anzueto-Sánchez, A. Martínez-Ríos, D. A. May-Arrioja, I. Torres-Gómez, R. Selvas-Aguilar, and J. Alvárez-Chávez, “Enhanced tuning mechanism in fiber laser based on multimode interferente effects,” Electron. Lett. 42(23), 1337–1338 (2006).
[CrossRef]

D. A. May-Arrioja, N. Bickel, and P. LiKamWa, “Robust 2x2 multimode interference optical switch,” Opt. Quantum Electron. 38(7), 557–566 (2006).
[CrossRef]

Mehta, A.

Mohammed, W.

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15(8), 1129–1131 (2003).
[CrossRef]

Mohammed, W. S.

Mokhtar, M. R.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratgin over 90nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibser, “Fiber Bragg grating compression-tuned over 110nm,” Electron. Lett. 39(6), 509–511 (2003).
[CrossRef]

Moloney, J. V.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[CrossRef]

Peyghambarian, N.

Richardson, D. J.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibser, “Fiber Bragg grating compression-tuned over 110nm,” Electron. Lett. 39(6), 509–511 (2003).
[CrossRef]

Sanchez-Mondragon, J. J.

D. A. May-Arrioja, P. LiKamWa,, J. J. Sanchez-Mondragon, R. Selvas-Aguilar, and I. Torres-Gomez, “A reconfigurable multimode interference splitter for sensing applications,” Meas. Sci. Technol. 18(10), 3241–3246 (2007).
[CrossRef]

Schinn, G. W.

H. Chen, F. Babin, M. Leblanc, G. He, and G. W. Schinn, “70-nm tunable single-longitudinal mode erbium-doped fiber laser,” Proc. SPIE 4833, 956 (2003).
[CrossRef]

Schülzgen, A.

Selvas, R.

Selvas-Aguilar, R.

D. A. May-Arrioja, P. LiKamWa,, J. J. Sanchez-Mondragon, R. Selvas-Aguilar, and I. Torres-Gomez, “A reconfigurable multimode interference splitter for sensing applications,” Meas. Sci. Technol. 18(10), 3241–3246 (2007).
[CrossRef]

G. Anzueto-Sánchez, A. Martínez-Ríos, D. A. May-Arrioja, I. Torres-Gómez, R. Selvas-Aguilar, and J. Alvárez-Chávez, “Enhanced tuning mechanism in fiber laser based on multimode interferente effects,” Electron. Lett. 42(23), 1337–1338 (2006).
[CrossRef]

Set, S. Y.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratgin over 90nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibser, “Fiber Bragg grating compression-tuned over 110nm,” Electron. Lett. 39(6), 509–511 (2003).
[CrossRef]

Shum, P.

L. Xia, P. Shum, Y. X. Wang, and T. H. Cheng, “Stable triple-wavelength fiber ring laser with ultranarrow wavelength spacing using a triple-transmission-band fiber Bragg grating filter,” IEEE Photon. Technol. Lett. 18(20), 2162–2164 (2006).
[CrossRef]

Smit, M. K.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[CrossRef]

Smith, P. W. E.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[CrossRef]

Suzuki, S.

Temyanko, V. L.

Tholey, V.

M. J. Chawki, I. Valiente, R. Auffret, and V. Tholey, “All fibre, 1.5 mu m widely tunable single frequency and narrow linewidth semiconductor ring laser with fibre Fabry Perot filter,” Electron. Lett. 29(23), 2034–2035 (1993).
[CrossRef]

Torres-Gomez, I.

D. A. May-Arrioja, P. LiKamWa,, J. J. Sanchez-Mondragon, R. Selvas-Aguilar, and I. Torres-Gomez, “A reconfigurable multimode interference splitter for sensing applications,” Meas. Sci. Technol. 18(10), 3241–3246 (2007).
[CrossRef]

R. Selvas, I. Torres-Gomez, A. Martinez-Rios, J. Alvarez-Chavez, D. May-Arrioja, P. Likamwa, A. Mehta, and E. Johnson, “Wavelength tuning of fiber lasers using multimode interference effects,” Opt. Express 13(23), 9439–9445 (2005).
[CrossRef] [PubMed]

Torres-Gómez, I.

G. Anzueto-Sánchez, A. Martínez-Ríos, D. A. May-Arrioja, I. Torres-Gómez, R. Selvas-Aguilar, and J. Alvárez-Chávez, “Enhanced tuning mechanism in fiber laser based on multimode interferente effects,” Electron. Lett. 42(23), 1337–1338 (2006).
[CrossRef]

Valiente, I.

M. J. Chawki, I. Valiente, R. Auffret, and V. Tholey, “All fibre, 1.5 mu m widely tunable single frequency and narrow linewidth semiconductor ring laser with fibre Fabry Perot filter,” Electron. Lett. 29(23), 2034–2035 (1993).
[CrossRef]

Veerman, F. B.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[CrossRef]

Verbeek, B. H.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[CrossRef]

Wang, Q.

Wang, Y. X.

L. Xia, P. Shum, Y. X. Wang, and T. H. Cheng, “Stable triple-wavelength fiber ring laser with ultranarrow wavelength spacing using a triple-transmission-band fiber Bragg grating filter,” IEEE Photon. Technol. Lett. 18(20), 2162–2164 (2006).
[CrossRef]

Wu, J.

Xia, L.

L. Xia, P. Shum, Y. X. Wang, and T. H. Cheng, “Stable triple-wavelength fiber ring laser with ultranarrow wavelength spacing using a triple-transmission-band fiber Bragg grating filter,” IEEE Photon. Technol. Lett. 18(20), 2162–2164 (2006).
[CrossRef]

Xu, K.

Zhang, Z.

Zhu, X.

Electron. Lett. (3)

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibser, “Fiber Bragg grating compression-tuned over 110nm,” Electron. Lett. 39(6), 509–511 (2003).
[CrossRef]

M. J. Chawki, I. Valiente, R. Auffret, and V. Tholey, “All fibre, 1.5 mu m widely tunable single frequency and narrow linewidth semiconductor ring laser with fibre Fabry Perot filter,” Electron. Lett. 29(23), 2034–2035 (1993).
[CrossRef]

G. Anzueto-Sánchez, A. Martínez-Ríos, D. A. May-Arrioja, I. Torres-Gómez, R. Selvas-Aguilar, and J. Alvárez-Chávez, “Enhanced tuning mechanism in fiber laser based on multimode interferente effects,” Electron. Lett. 42(23), 1337–1338 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

L. Xia, P. Shum, Y. X. Wang, and T. H. Cheng, “Stable triple-wavelength fiber ring laser with ultranarrow wavelength spacing using a triple-transmission-band fiber Bragg grating filter,” IEEE Photon. Technol. Lett. 18(20), 2162–2164 (2006).
[CrossRef]

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratgin over 90nm using a simple tuning package,” IEEE Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15(8), 1129–1131 (2003).
[CrossRef]

J. Lightwave Technol. (4)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10(12), 1843–1850 (1992).
[CrossRef]

M. P. Earnshaw and D. W. E. Allsopp, “Semiconductor space switches based on multimode interference couplers,” J. Lightwave Technol. 20(4), 643–650 (2002).
[CrossRef]

W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22(2), 469–477 (2004).
[CrossRef]

Meas. Sci. Technol. (1)

D. A. May-Arrioja, P. LiKamWa,, J. J. Sanchez-Mondragon, R. Selvas-Aguilar, and I. Torres-Gomez, “A reconfigurable multimode interference splitter for sensing applications,” Meas. Sci. Technol. 18(10), 3241–3246 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

D. A. May-Arrioja, N. Bickel, and P. LiKamWa, “Robust 2x2 multimode interference optical switch,” Opt. Quantum Electron. 38(7), 557–566 (2006).
[CrossRef]

Proc. SPIE (1)

H. Chen, F. Babin, M. Leblanc, G. He, and G. W. Schinn, “70-nm tunable single-longitudinal mode erbium-doped fiber laser,” Proc. SPIE 4833, 956 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the novel tunable MMI filter. The MMI filter is formed by the MMF (LMMF & No-core Fiber) between the two single mode fibers.

Fig. 2
Fig. 2

MMI Filter bandwidth at FWHM as a function of different refractive index matching liquids.

Fig. 3
Fig. 3

Peak wavelength response of the MMI filter as a function of the separation between fibers in the ferrule. Inset: MMI filter spectral response for different fiber gaps.

Fig. 4
Fig. 4

Schematic layout of the tunable erbium-doped fiber laser based on the MMI.

Fig. 5
Fig. 5

Experimental tuning results, output power versus wavelengths: 60nm tuning with more than 40 dB contrast.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ 0 = p n M M F D M M F 2 L w i t h p = 0 , 1 , 2 , ...

Metrics