Abstract

The interest in the application of cholesteric liquid crystals for tunable lasers has risen in the past few years. Here, we want to obtain a mechanically tunable laser device using cholesteric liquid crystal (CLC) elastomers as resonant cavity mirrors in a three-layer configuration, which includes in between an isotropic layer incorporating a laser dye as active medium. The transmission band-gap of the two CLC elastomers was shifted one with respect to the other in order to create a defect (“notch”) in the middle of the band-gap which allowed a single-mode lasing from the system. The wavelength of the laser could be changed by mechanical tuning of the rubbery device.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford, Clarendon Press, 1993).
  2. S. Chandrasekhar. Liquid Crystals (Cambridge University press, 2nd edition, 2004).
  3. L. S. Goldberg and J. M. Schnur, "Tunable internal-feedback liquid crystal dye laser," (US patent 3 771 065, 1973).
  4. I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, "Generation of tunable radiation by impurity cholesteric liquid crystals," Sov. JEPT Letters 32,24-27 (1980).
  5. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, "Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals," Opt. Lett. 23,1707-1709 (1998).
    [CrossRef]
  6. A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Ultraviolet lasing in cholesteric liquid crystals," Opt. Lett. 26,804-806 (2001).
    [CrossRef]
  7. F. Araoka, K.-C. Shin, Y Takanishi, K. Ishikawa, H. Takezoe, Z. G. Zhu, and T. M. Swager, "How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing," J. Appl. Phys. 94,279-283 (2003).
    [CrossRef]
  8. M. Chambers, M. Fox, M. Grell, and J. Hill, "Lasing from a förster transfer fluorescent dye couple dissolved in a chiral nematic liquid crystal," Adv. Funct. Mater. 12,808-810 (2002).
    [CrossRef]
  9. P. V. Shibaev, K. Tang, A. Z. Genack, V. Kopp, and M. M. Green, "Lasing from a stiff chain polymeric lyotropic cholesteric liquid crystal," Macromolecules 35,3022-3025 (2002).
    [CrossRef]
  10. M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14,306-309 (2002).
    [CrossRef]
  11. W.Y. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri. "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase ii," Nat. Mater.,  1,111-113 (2002).
    [CrossRef]
  12. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and F. Ciuchi, "Lasing in an intermediate twisted phase between cholesteric and smectic a phase," Appl. Phys. Lett. 88,101105 (2006).
    [CrossRef]
  13. J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser emission in a dye doped cholesteric polymer network," Adv. Mater. 14,746-749 (2002).
    [CrossRef]
  14. P.V. Shibaev, A. Kopp, A. Genack, and E. Hanelt, "Lasing from chiral photonic band gap materials based on cholesteric glasses," Liq. Cryst. 30,1391-1400 (2003).
    [CrossRef]
  15. A. Chanishvili; G. Chilaya; G. Petriashvili; R. Barberi; R. Bartolino; G. Cipparrone; A. Mazzulla; R. Gimenez; L. Oriol; M. Pinol, "Widely tunable ultraviolet-visible liquid crystal laser," Appl. Phys. Lett. 86,051107 (2005).
    [CrossRef]
  16. Y. Huang; Y. Zhou; S. T. Wu, "Spatially tunable laser emission in dye-doped photonic liquid crystals," Appl. Phys. Lett. 88,011107 (2005).
    [CrossRef]
  17. M. Kasano; M. Ozaki; K. Yoshino, "Electrically tunable waveguide laser based on ferroelectric liquid crystal," Appl. Phys. Lett. 82,4026-4028 (2003).
    [CrossRef]
  18. Y. Mao; E. M. Terentjev, M. Warner, "Cholesteric elastomers: deformable photonic solids," Phys. Rev. E 64,041803 (2001).
    [CrossRef]
  19. M. Warner and E. M. Terentjev, Liquid Crystal Elastomers, (Oxford science publications, 2003).
  20. H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13,1069-1072 (2001).
    [CrossRef]
  21. P. Cicuta, A. R. Tajbakhsh, and E. M. Terentjev, "Evolution of photonic structure on deformation of cholesteric elastomers," Phys. Rev. E 65, 051704 (2002).
    [CrossRef]
  22. Y. Hirota, Y. Ji, F. Serra, A. R. Tajbakhsh, and E. M. Terentjev, "Effect of cross linking on the photonic bandgap in deformable cholesteric elastomers," Opt. Express 16,5320-5331 (2008).
    [CrossRef] [PubMed]
  23. Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, "Doubling the optical efficiency of a chiral liquid crystal laser using a reflector," Appl. Phys. Lett. 87,231107 (2005).
    [CrossRef]
  24. Y. Zhou, Y. Huang, and S. T. Wu, "Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector," Opt. Express 14,3906-3916 (2006).
    [CrossRef] [PubMed]
  25. Y. Zhou, Y. Huang, and S. T. Wu, "Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector," Phys. Rev. E 74,061705 (2006).
    [CrossRef]
  26. G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, G. Cipparrone, A. Mazzulla, M. P. De Santo, H. Sellame, and M. A. Matranga. "Single mode lasing in multilayer sandwiched systems consisting of cholesteric liquid crystals and dye solution," in Xv International Symposium on Advanced Display Technologies6637, 6670 (2007).

2008 (1)

2006 (3)

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and F. Ciuchi, "Lasing in an intermediate twisted phase between cholesteric and smectic a phase," Appl. Phys. Lett. 88,101105 (2006).
[CrossRef]

Y. Zhou, Y. Huang, and S. T. Wu, "Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector," Opt. Express 14,3906-3916 (2006).
[CrossRef] [PubMed]

Y. Zhou, Y. Huang, and S. T. Wu, "Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector," Phys. Rev. E 74,061705 (2006).
[CrossRef]

2005 (3)

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, "Doubling the optical efficiency of a chiral liquid crystal laser using a reflector," Appl. Phys. Lett. 87,231107 (2005).
[CrossRef]

A. Chanishvili; G. Chilaya; G. Petriashvili; R. Barberi; R. Bartolino; G. Cipparrone; A. Mazzulla; R. Gimenez; L. Oriol; M. Pinol, "Widely tunable ultraviolet-visible liquid crystal laser," Appl. Phys. Lett. 86,051107 (2005).
[CrossRef]

Y. Huang; Y. Zhou; S. T. Wu, "Spatially tunable laser emission in dye-doped photonic liquid crystals," Appl. Phys. Lett. 88,011107 (2005).
[CrossRef]

2003 (3)

M. Kasano; M. Ozaki; K. Yoshino, "Electrically tunable waveguide laser based on ferroelectric liquid crystal," Appl. Phys. Lett. 82,4026-4028 (2003).
[CrossRef]

P.V. Shibaev, A. Kopp, A. Genack, and E. Hanelt, "Lasing from chiral photonic band gap materials based on cholesteric glasses," Liq. Cryst. 30,1391-1400 (2003).
[CrossRef]

F. Araoka, K.-C. Shin, Y Takanishi, K. Ishikawa, H. Takezoe, Z. G. Zhu, and T. M. Swager, "How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing," J. Appl. Phys. 94,279-283 (2003).
[CrossRef]

2002 (6)

M. Chambers, M. Fox, M. Grell, and J. Hill, "Lasing from a förster transfer fluorescent dye couple dissolved in a chiral nematic liquid crystal," Adv. Funct. Mater. 12,808-810 (2002).
[CrossRef]

P. V. Shibaev, K. Tang, A. Z. Genack, V. Kopp, and M. M. Green, "Lasing from a stiff chain polymeric lyotropic cholesteric liquid crystal," Macromolecules 35,3022-3025 (2002).
[CrossRef]

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14,306-309 (2002).
[CrossRef]

W.Y. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri. "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase ii," Nat. Mater.,  1,111-113 (2002).
[CrossRef]

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser emission in a dye doped cholesteric polymer network," Adv. Mater. 14,746-749 (2002).
[CrossRef]

P. Cicuta, A. R. Tajbakhsh, and E. M. Terentjev, "Evolution of photonic structure on deformation of cholesteric elastomers," Phys. Rev. E 65, 051704 (2002).
[CrossRef]

2001 (3)

A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Ultraviolet lasing in cholesteric liquid crystals," Opt. Lett. 26,804-806 (2001).
[CrossRef]

Y. Mao; E. M. Terentjev, M. Warner, "Cholesteric elastomers: deformable photonic solids," Phys. Rev. E 64,041803 (2001).
[CrossRef]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13,1069-1072 (2001).
[CrossRef]

1998 (1)

1980 (1)

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, "Generation of tunable radiation by impurity cholesteric liquid crystals," Sov. JEPT Letters 32,24-27 (1980).

Araoka, F.

F. Araoka, K.-C. Shin, Y Takanishi, K. Ishikawa, H. Takezoe, Z. G. Zhu, and T. M. Swager, "How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing," J. Appl. Phys. 94,279-283 (2003).
[CrossRef]

Barberi, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and F. Ciuchi, "Lasing in an intermediate twisted phase between cholesteric and smectic a phase," Appl. Phys. Lett. 88,101105 (2006).
[CrossRef]

A. Chanishvili; G. Chilaya; G. Petriashvili; R. Barberi; R. Bartolino; G. Cipparrone; A. Mazzulla; R. Gimenez; L. Oriol; M. Pinol, "Widely tunable ultraviolet-visible liquid crystal laser," Appl. Phys. Lett. 86,051107 (2005).
[CrossRef]

Bartolino, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and F. Ciuchi, "Lasing in an intermediate twisted phase between cholesteric and smectic a phase," Appl. Phys. Lett. 88,101105 (2006).
[CrossRef]

A. Chanishvili; G. Chilaya; G. Petriashvili; R. Barberi; R. Bartolino; G. Cipparrone; A. Mazzulla; R. Gimenez; L. Oriol; M. Pinol, "Widely tunable ultraviolet-visible liquid crystal laser," Appl. Phys. Lett. 86,051107 (2005).
[CrossRef]

Bass, M.

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, "Doubling the optical efficiency of a chiral liquid crystal laser using a reflector," Appl. Phys. Lett. 87,231107 (2005).
[CrossRef]

Cao, W.Y.

W.Y. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri. "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase ii," Nat. Mater.,  1,111-113 (2002).
[CrossRef]

Chambers, M.

M. Chambers, M. Fox, M. Grell, and J. Hill, "Lasing from a förster transfer fluorescent dye couple dissolved in a chiral nematic liquid crystal," Adv. Funct. Mater. 12,808-810 (2002).
[CrossRef]

Chanishvili, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and F. Ciuchi, "Lasing in an intermediate twisted phase between cholesteric and smectic a phase," Appl. Phys. Lett. 88,101105 (2006).
[CrossRef]

A. Chanishvili; G. Chilaya; G. Petriashvili; R. Barberi; R. Bartolino; G. Cipparrone; A. Mazzulla; R. Gimenez; L. Oriol; M. Pinol, "Widely tunable ultraviolet-visible liquid crystal laser," Appl. Phys. Lett. 86,051107 (2005).
[CrossRef]

Chilaya, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and F. Ciuchi, "Lasing in an intermediate twisted phase between cholesteric and smectic a phase," Appl. Phys. Lett. 88,101105 (2006).
[CrossRef]

A. Chanishvili; G. Chilaya; G. Petriashvili; R. Barberi; R. Bartolino; G. Cipparrone; A. Mazzulla; R. Gimenez; L. Oriol; M. Pinol, "Widely tunable ultraviolet-visible liquid crystal laser," Appl. Phys. Lett. 86,051107 (2005).
[CrossRef]

Cicuta, P.

P. Cicuta, A. R. Tajbakhsh, and E. M. Terentjev, "Evolution of photonic structure on deformation of cholesteric elastomers," Phys. Rev. E 65, 051704 (2002).
[CrossRef]

Cipparrone, G.

A. Chanishvili; G. Chilaya; G. Petriashvili; R. Barberi; R. Bartolino; G. Cipparrone; A. Mazzulla; R. Gimenez; L. Oriol; M. Pinol, "Widely tunable ultraviolet-visible liquid crystal laser," Appl. Phys. Lett. 86,051107 (2005).
[CrossRef]

Ciuchi, F.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and F. Ciuchi, "Lasing in an intermediate twisted phase between cholesteric and smectic a phase," Appl. Phys. Lett. 88,101105 (2006).
[CrossRef]

De Santo, M. P.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and F. Ciuchi, "Lasing in an intermediate twisted phase between cholesteric and smectic a phase," Appl. Phys. Lett. 88,101105 (2006).
[CrossRef]

Fan, B.

Finkelmann, H.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser emission in a dye doped cholesteric polymer network," Adv. Mater. 14,746-749 (2002).
[CrossRef]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13,1069-1072 (2001).
[CrossRef]

Fox, M.

M. Chambers, M. Fox, M. Grell, and J. Hill, "Lasing from a förster transfer fluorescent dye couple dissolved in a chiral nematic liquid crystal," Adv. Funct. Mater. 12,808-810 (2002).
[CrossRef]

Ganzke, D.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14,306-309 (2002).
[CrossRef]

Genack, A.

P.V. Shibaev, A. Kopp, A. Genack, and E. Hanelt, "Lasing from chiral photonic band gap materials based on cholesteric glasses," Liq. Cryst. 30,1391-1400 (2003).
[CrossRef]

Genack, A. Z.

P. V. Shibaev, K. Tang, A. Z. Genack, V. Kopp, and M. M. Green, "Lasing from a stiff chain polymeric lyotropic cholesteric liquid crystal," Macromolecules 35,3022-3025 (2002).
[CrossRef]

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, "Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals," Opt. Lett. 23,1707-1709 (1998).
[CrossRef]

Gimenez, R.

A. Chanishvili; G. Chilaya; G. Petriashvili; R. Barberi; R. Bartolino; G. Cipparrone; A. Mazzulla; R. Gimenez; L. Oriol; M. Pinol, "Widely tunable ultraviolet-visible liquid crystal laser," Appl. Phys. Lett. 86,051107 (2005).
[CrossRef]

Green, M. M.

P. V. Shibaev, K. Tang, A. Z. Genack, V. Kopp, and M. M. Green, "Lasing from a stiff chain polymeric lyotropic cholesteric liquid crystal," Macromolecules 35,3022-3025 (2002).
[CrossRef]

Grell, M.

M. Chambers, M. Fox, M. Grell, and J. Hill, "Lasing from a förster transfer fluorescent dye couple dissolved in a chiral nematic liquid crystal," Adv. Funct. Mater. 12,808-810 (2002).
[CrossRef]

Haase, W.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14,306-309 (2002).
[CrossRef]

Hanelt, E.

P.V. Shibaev, A. Kopp, A. Genack, and E. Hanelt, "Lasing from chiral photonic band gap materials based on cholesteric glasses," Liq. Cryst. 30,1391-1400 (2003).
[CrossRef]

Hill, J.

M. Chambers, M. Fox, M. Grell, and J. Hill, "Lasing from a förster transfer fluorescent dye couple dissolved in a chiral nematic liquid crystal," Adv. Funct. Mater. 12,808-810 (2002).
[CrossRef]

Hirota, Y.

Huang, Y.

Y. Zhou, Y. Huang, and S. T. Wu, "Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector," Opt. Express 14,3906-3916 (2006).
[CrossRef] [PubMed]

Y. Zhou, Y. Huang, and S. T. Wu, "Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector," Phys. Rev. E 74,061705 (2006).
[CrossRef]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, "Doubling the optical efficiency of a chiral liquid crystal laser using a reflector," Appl. Phys. Lett. 87,231107 (2005).
[CrossRef]

Y. Huang; Y. Zhou; S. T. Wu, "Spatially tunable laser emission in dye-doped photonic liquid crystals," Appl. Phys. Lett. 88,011107 (2005).
[CrossRef]

Il’chishin, I. P.

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, "Generation of tunable radiation by impurity cholesteric liquid crystals," Sov. JEPT Letters 32,24-27 (1980).

Ishikawa, K.

F. Araoka, K.-C. Shin, Y Takanishi, K. Ishikawa, H. Takezoe, Z. G. Zhu, and T. M. Swager, "How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing," J. Appl. Phys. 94,279-283 (2003).
[CrossRef]

Ji, Y.

Kasano, M.

M. Kasano; M. Ozaki; K. Yoshino, "Electrically tunable waveguide laser based on ferroelectric liquid crystal," Appl. Phys. Lett. 82,4026-4028 (2003).
[CrossRef]

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14,306-309 (2002).
[CrossRef]

Kim, S. T.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser emission in a dye doped cholesteric polymer network," Adv. Mater. 14,746-749 (2002).
[CrossRef]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13,1069-1072 (2001).
[CrossRef]

Kopp, A.

P.V. Shibaev, A. Kopp, A. Genack, and E. Hanelt, "Lasing from chiral photonic band gap materials based on cholesteric glasses," Liq. Cryst. 30,1391-1400 (2003).
[CrossRef]

Kopp, V.

P. V. Shibaev, K. Tang, A. Z. Genack, V. Kopp, and M. M. Green, "Lasing from a stiff chain polymeric lyotropic cholesteric liquid crystal," Macromolecules 35,3022-3025 (2002).
[CrossRef]

Kopp, V. I.

Mao, Y.

Y. Mao; E. M. Terentjev, M. Warner, "Cholesteric elastomers: deformable photonic solids," Phys. Rev. E 64,041803 (2001).
[CrossRef]

Matranga, M. A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and F. Ciuchi, "Lasing in an intermediate twisted phase between cholesteric and smectic a phase," Appl. Phys. Lett. 88,101105 (2006).
[CrossRef]

Mazzulla, A.

A. Chanishvili; G. Chilaya; G. Petriashvili; R. Barberi; R. Bartolino; G. Cipparrone; A. Mazzulla; R. Gimenez; L. Oriol; M. Pinol, "Widely tunable ultraviolet-visible liquid crystal laser," Appl. Phys. Lett. 86,051107 (2005).
[CrossRef]

Munoz, A.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13,1069-1072 (2001).
[CrossRef]

Muñoz, A.

W.Y. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri. "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase ii," Nat. Mater.,  1,111-113 (2002).
[CrossRef]

A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Ultraviolet lasing in cholesteric liquid crystals," Opt. Lett. 26,804-806 (2001).
[CrossRef]

Oriol, L.

A. Chanishvili; G. Chilaya; G. Petriashvili; R. Barberi; R. Bartolino; G. Cipparrone; A. Mazzulla; R. Gimenez; L. Oriol; M. Pinol, "Widely tunable ultraviolet-visible liquid crystal laser," Appl. Phys. Lett. 86,051107 (2005).
[CrossRef]

Ozaki, M.

M. Kasano; M. Ozaki; K. Yoshino, "Electrically tunable waveguide laser based on ferroelectric liquid crystal," Appl. Phys. Lett. 82,4026-4028 (2003).
[CrossRef]

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14,306-309 (2002).
[CrossRef]

Palffy-Muhoray, P.

W.Y. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri. "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase ii," Nat. Mater.,  1,111-113 (2002).
[CrossRef]

A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Ultraviolet lasing in cholesteric liquid crystals," Opt. Lett. 26,804-806 (2001).
[CrossRef]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13,1069-1072 (2001).
[CrossRef]

Petriashvili, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and F. Ciuchi, "Lasing in an intermediate twisted phase between cholesteric and smectic a phase," Appl. Phys. Lett. 88,101105 (2006).
[CrossRef]

A. Chanishvili; G. Chilaya; G. Petriashvili; R. Barberi; R. Bartolino; G. Cipparrone; A. Mazzulla; R. Gimenez; L. Oriol; M. Pinol, "Widely tunable ultraviolet-visible liquid crystal laser," Appl. Phys. Lett. 86,051107 (2005).
[CrossRef]

Pinol, M.

A. Chanishvili; G. Chilaya; G. Petriashvili; R. Barberi; R. Bartolino; G. Cipparrone; A. Mazzulla; R. Gimenez; L. Oriol; M. Pinol, "Widely tunable ultraviolet-visible liquid crystal laser," Appl. Phys. Lett. 86,051107 (2005).
[CrossRef]

Rapaport, A.

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, "Doubling the optical efficiency of a chiral liquid crystal laser using a reflector," Appl. Phys. Lett. 87,231107 (2005).
[CrossRef]

Schmidtke, J.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser emission in a dye doped cholesteric polymer network," Adv. Mater. 14,746-749 (2002).
[CrossRef]

Serra, F.

Shibaev, P. V.

P. V. Shibaev, K. Tang, A. Z. Genack, V. Kopp, and M. M. Green, "Lasing from a stiff chain polymeric lyotropic cholesteric liquid crystal," Macromolecules 35,3022-3025 (2002).
[CrossRef]

Shibaev, P.V.

P.V. Shibaev, A. Kopp, A. Genack, and E. Hanelt, "Lasing from chiral photonic band gap materials based on cholesteric glasses," Liq. Cryst. 30,1391-1400 (2003).
[CrossRef]

Shin, K.-C.

F. Araoka, K.-C. Shin, Y Takanishi, K. Ishikawa, H. Takezoe, Z. G. Zhu, and T. M. Swager, "How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing," J. Appl. Phys. 94,279-283 (2003).
[CrossRef]

Shpak, M. T.

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, "Generation of tunable radiation by impurity cholesteric liquid crystals," Sov. JEPT Letters 32,24-27 (1980).

Stille, W.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser emission in a dye doped cholesteric polymer network," Adv. Mater. 14,746-749 (2002).
[CrossRef]

Swager, T. M.

F. Araoka, K.-C. Shin, Y Takanishi, K. Ishikawa, H. Takezoe, Z. G. Zhu, and T. M. Swager, "How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing," J. Appl. Phys. 94,279-283 (2003).
[CrossRef]

Taheri, B.

W.Y. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri. "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase ii," Nat. Mater.,  1,111-113 (2002).
[CrossRef]

A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Ultraviolet lasing in cholesteric liquid crystals," Opt. Lett. 26,804-806 (2001).
[CrossRef]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13,1069-1072 (2001).
[CrossRef]

Tajbakhsh, A. R.

Y. Hirota, Y. Ji, F. Serra, A. R. Tajbakhsh, and E. M. Terentjev, "Effect of cross linking on the photonic bandgap in deformable cholesteric elastomers," Opt. Express 16,5320-5331 (2008).
[CrossRef] [PubMed]

P. Cicuta, A. R. Tajbakhsh, and E. M. Terentjev, "Evolution of photonic structure on deformation of cholesteric elastomers," Phys. Rev. E 65, 051704 (2002).
[CrossRef]

Takanishi, Y

F. Araoka, K.-C. Shin, Y Takanishi, K. Ishikawa, H. Takezoe, Z. G. Zhu, and T. M. Swager, "How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing," J. Appl. Phys. 94,279-283 (2003).
[CrossRef]

Takezoe, H.

F. Araoka, K.-C. Shin, Y Takanishi, K. Ishikawa, H. Takezoe, Z. G. Zhu, and T. M. Swager, "How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing," J. Appl. Phys. 94,279-283 (2003).
[CrossRef]

Tang, K.

P. V. Shibaev, K. Tang, A. Z. Genack, V. Kopp, and M. M. Green, "Lasing from a stiff chain polymeric lyotropic cholesteric liquid crystal," Macromolecules 35,3022-3025 (2002).
[CrossRef]

Terentjev, E. M.

Y. Hirota, Y. Ji, F. Serra, A. R. Tajbakhsh, and E. M. Terentjev, "Effect of cross linking on the photonic bandgap in deformable cholesteric elastomers," Opt. Express 16,5320-5331 (2008).
[CrossRef] [PubMed]

P. Cicuta, A. R. Tajbakhsh, and E. M. Terentjev, "Evolution of photonic structure on deformation of cholesteric elastomers," Phys. Rev. E 65, 051704 (2002).
[CrossRef]

Y. Mao; E. M. Terentjev, M. Warner, "Cholesteric elastomers: deformable photonic solids," Phys. Rev. E 64,041803 (2001).
[CrossRef]

Tikhonov, E. A.

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, "Generation of tunable radiation by impurity cholesteric liquid crystals," Sov. JEPT Letters 32,24-27 (1980).

Tishchenko, V. G.

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, "Generation of tunable radiation by impurity cholesteric liquid crystals," Sov. JEPT Letters 32,24-27 (1980).

Vithana, H. K. M.

Warner, M.

Y. Mao; E. M. Terentjev, M. Warner, "Cholesteric elastomers: deformable photonic solids," Phys. Rev. E 64,041803 (2001).
[CrossRef]

Wu, S. T.

Y. Zhou, Y. Huang, and S. T. Wu, "Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector," Phys. Rev. E 74,061705 (2006).
[CrossRef]

Y. Zhou, Y. Huang, and S. T. Wu, "Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector," Opt. Express 14,3906-3916 (2006).
[CrossRef] [PubMed]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, "Doubling the optical efficiency of a chiral liquid crystal laser using a reflector," Appl. Phys. Lett. 87,231107 (2005).
[CrossRef]

Y. Huang; Y. Zhou; S. T. Wu, "Spatially tunable laser emission in dye-doped photonic liquid crystals," Appl. Phys. Lett. 88,011107 (2005).
[CrossRef]

Yoshino, K.

M. Kasano; M. Ozaki; K. Yoshino, "Electrically tunable waveguide laser based on ferroelectric liquid crystal," Appl. Phys. Lett. 82,4026-4028 (2003).
[CrossRef]

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14,306-309 (2002).
[CrossRef]

Zhou, Y.

Y. Zhou, Y. Huang, and S. T. Wu, "Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector," Opt. Express 14,3906-3916 (2006).
[CrossRef] [PubMed]

Y. Zhou, Y. Huang, and S. T. Wu, "Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector," Phys. Rev. E 74,061705 (2006).
[CrossRef]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, "Doubling the optical efficiency of a chiral liquid crystal laser using a reflector," Appl. Phys. Lett. 87,231107 (2005).
[CrossRef]

Y. Huang; Y. Zhou; S. T. Wu, "Spatially tunable laser emission in dye-doped photonic liquid crystals," Appl. Phys. Lett. 88,011107 (2005).
[CrossRef]

Zhu, Z. G.

F. Araoka, K.-C. Shin, Y Takanishi, K. Ishikawa, H. Takezoe, Z. G. Zhu, and T. M. Swager, "How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing," J. Appl. Phys. 94,279-283 (2003).
[CrossRef]

Adv. Funct. Mater. (1)

M. Chambers, M. Fox, M. Grell, and J. Hill, "Lasing from a förster transfer fluorescent dye couple dissolved in a chiral nematic liquid crystal," Adv. Funct. Mater. 12,808-810 (2002).
[CrossRef]

Adv. Mater. (3)

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14,306-309 (2002).
[CrossRef]

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser emission in a dye doped cholesteric polymer network," Adv. Mater. 14,746-749 (2002).
[CrossRef]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13,1069-1072 (2001).
[CrossRef]

Appl. Phys. Lett. (5)

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and F. Ciuchi, "Lasing in an intermediate twisted phase between cholesteric and smectic a phase," Appl. Phys. Lett. 88,101105 (2006).
[CrossRef]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, "Doubling the optical efficiency of a chiral liquid crystal laser using a reflector," Appl. Phys. Lett. 87,231107 (2005).
[CrossRef]

A. Chanishvili; G. Chilaya; G. Petriashvili; R. Barberi; R. Bartolino; G. Cipparrone; A. Mazzulla; R. Gimenez; L. Oriol; M. Pinol, "Widely tunable ultraviolet-visible liquid crystal laser," Appl. Phys. Lett. 86,051107 (2005).
[CrossRef]

Y. Huang; Y. Zhou; S. T. Wu, "Spatially tunable laser emission in dye-doped photonic liquid crystals," Appl. Phys. Lett. 88,011107 (2005).
[CrossRef]

M. Kasano; M. Ozaki; K. Yoshino, "Electrically tunable waveguide laser based on ferroelectric liquid crystal," Appl. Phys. Lett. 82,4026-4028 (2003).
[CrossRef]

J. Appl. Phys. (1)

F. Araoka, K.-C. Shin, Y Takanishi, K. Ishikawa, H. Takezoe, Z. G. Zhu, and T. M. Swager, "How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing," J. Appl. Phys. 94,279-283 (2003).
[CrossRef]

Liq. Cryst. (1)

P.V. Shibaev, A. Kopp, A. Genack, and E. Hanelt, "Lasing from chiral photonic band gap materials based on cholesteric glasses," Liq. Cryst. 30,1391-1400 (2003).
[CrossRef]

Macromolecules (1)

P. V. Shibaev, K. Tang, A. Z. Genack, V. Kopp, and M. M. Green, "Lasing from a stiff chain polymeric lyotropic cholesteric liquid crystal," Macromolecules 35,3022-3025 (2002).
[CrossRef]

Nat. Mater. (1)

W.Y. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri. "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase ii," Nat. Mater.,  1,111-113 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. E (3)

Y. Mao; E. M. Terentjev, M. Warner, "Cholesteric elastomers: deformable photonic solids," Phys. Rev. E 64,041803 (2001).
[CrossRef]

P. Cicuta, A. R. Tajbakhsh, and E. M. Terentjev, "Evolution of photonic structure on deformation of cholesteric elastomers," Phys. Rev. E 65, 051704 (2002).
[CrossRef]

Y. Zhou, Y. Huang, and S. T. Wu, "Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector," Phys. Rev. E 74,061705 (2006).
[CrossRef]

Sov. JEPT Letters (1)

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, "Generation of tunable radiation by impurity cholesteric liquid crystals," Sov. JEPT Letters 32,24-27 (1980).

Other (5)

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford, Clarendon Press, 1993).

S. Chandrasekhar. Liquid Crystals (Cambridge University press, 2nd edition, 2004).

L. S. Goldberg and J. M. Schnur, "Tunable internal-feedback liquid crystal dye laser," (US patent 3 771 065, 1973).

M. Warner and E. M. Terentjev, Liquid Crystal Elastomers, (Oxford science publications, 2003).

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, G. Cipparrone, A. Mazzulla, M. P. De Santo, H. Sellame, and M. A. Matranga. "Single mode lasing in multilayer sandwiched systems consisting of cholesteric liquid crystals and dye solution," in Xv International Symposium on Advanced Display Technologies6637, 6670 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scheme representing the layered structure: two silicone elastomers are used as mechanical support for CLC elastomers. The more internal layer is a dye-doped isotropic polymer.

Fig. 2.
Fig. 2.

Left panel: tuning of the notch in the shifted band-gap assembly where the two CLC elastomers had different composition (13.5% and 10% chiral dopant). The strain-dependent position of the notch is indicated by vertical lines. Right panel: wavelength shift of the notch as a function of the stretching. The fit is obtained with a power law where the exponent is -0.36, therefore in the expected range between -0.5 and -0.25 (colors online).

Fig. 3.
Fig. 3.

Left panel: tuning of the notch in the shifted band-gap assembly. The value of the stretching is referred to the initially unstretched layer. The other layer was previously stretched by 13%. Right panel: wavelength shift of the notch as a function of the stretching. The fit is obtained with a power law where the exponent is -0.36 (colors online).

Fig. 4.
Fig. 4.

Example of laser emission obtained with a three-layer device in the shifted band-gap configuration being progressively stretched. In the figure it is possible to observe the mechanical tuning of about 5 nanometers. The inset shows the wavelength tuning as a function of the sample strain.

Metrics