Abstract

Fiber-to-the-antenna (FTTA) system can be a cost-effective technique for distributing high frequency signals from the head-end office to a number of remote antenna units via passive optical splitter and propagating through low-loss and low-cost optical fibers. Here, we experimentally demonstrate an optical ultra-wideband (UWB) – impulse radio (IR) FTTA system for in-building and in-home applications. The optical UWB-IR wireless link is operated in the W-band (75 GHz - 110 GHz) using our developed near-ballistic unitraveling-carrier photodiode based photonic transmitter (PT) and a 10 GHz mode-locked laser. 2.5 Gb/s UWB-IR FTTA systems with 1,024 high split-ratio and transmission over 300 m optical fiber are demonstrated using direct PT modulation.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-T. Hsueh, Z. Jia, H.-C. Chien, J. Yu, and G.-K. Chang, “A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator,” IEEE Photon. Technol. Lett. 21(18), 1338–1340 (2009).
    [CrossRef]
  2. A. Chowdhury, H.-C. Chien, Y.-T. Hsueh, and G.-K. Chang, “Advanced system technologies and field demonstration for in-building optical-wireless network with integrated broadband services,” J. Lightwave Technol. 27(12), 1920–1927 (2009).
    [CrossRef]
  3. R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
    [CrossRef]
  4. C. Duan, G. Pekhteryev, J. Fang, Y. Nakache, J. Zhang, K. Tajima, Y. Nishioka, and H. Hirai, “Transmitting multiple HD video streams over UWB links,” in Proc. CCNC’06, Las Vegas, NV, 2006, 2, 691–695.
  5. T. Lunttila, S. Iraji, and H. Berg, “Advanced coding schemes for a multi-band OFDM ultrawideband system towards 1 Gbps,” in Proc. CCNC’06, Las Vegas, NV, 2006, 1, 553–557.
  6. Q. Zou, A. Tarighat, and A. H. Sayed, “Performance analysis of multiband OFDM UWB communications with application to range improvement,” IEEE Trans. Vehicular Technol. 56(6), 3864–3878 (2007).
    [CrossRef]
  7. Y.-S. Wu and J.-W. Shi, “Dynamic analysis of high-power and high-speed near-ballistic unitraveling carrier photodiodes at W-band,” IEEE Photon. Technol. Lett. 20(13), 1160–1162 (2008).
    [CrossRef]
  8. F.-M. Kuo, J.-W. Shi, S.-N. Wang, N.-W. Chen, P.-T. Shih, C.-T. Lin, W.-J. Jiang, E.-Z. Wong, J. Chen, and S. Chi, “W-band wireless data transmission by the integration of a near-ballistic uni-traveling-carrier photodiode (NBUTC-PD) with a horn antenna fed by a Quasi-Yagi radiator,” IEEE Electron Device Lett. 30(11), 1167–1169 (2009).
    [CrossRef]
  9. T.-A. Liu, G.-R. Lin, Y.-C. Chang, and C.-L. Pan, “Wireless audio and burst communication link with directly modulated THz photoconductive antenna,” Opt. Express 13(25), 10416–10423 (2005).
    [CrossRef] [PubMed]
  10. H. Togo, P.-C. P. Sah, N. Shimizu, and T. Nagatsuma, “Gigabit impulse radio link using photonic signal-generation techniques,” European Microwave Conference 2005, 1, 4–7
  11. J. Cartledge, D. Krause, K. Roberts, C. Laperle, D. McGhan, H. Sun, K. Wu, M. O’Sullivan, and Y. Jiang, “Electronic signal processing for fiber-optic communication,” IEEE LEOS Newsletters 23, 11–15 (2009).

2009 (4)

Y.-T. Hsueh, Z. Jia, H.-C. Chien, J. Yu, and G.-K. Chang, “A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator,” IEEE Photon. Technol. Lett. 21(18), 1338–1340 (2009).
[CrossRef]

A. Chowdhury, H.-C. Chien, Y.-T. Hsueh, and G.-K. Chang, “Advanced system technologies and field demonstration for in-building optical-wireless network with integrated broadband services,” J. Lightwave Technol. 27(12), 1920–1927 (2009).
[CrossRef]

F.-M. Kuo, J.-W. Shi, S.-N. Wang, N.-W. Chen, P.-T. Shih, C.-T. Lin, W.-J. Jiang, E.-Z. Wong, J. Chen, and S. Chi, “W-band wireless data transmission by the integration of a near-ballistic uni-traveling-carrier photodiode (NBUTC-PD) with a horn antenna fed by a Quasi-Yagi radiator,” IEEE Electron Device Lett. 30(11), 1167–1169 (2009).
[CrossRef]

J. Cartledge, D. Krause, K. Roberts, C. Laperle, D. McGhan, H. Sun, K. Wu, M. O’Sullivan, and Y. Jiang, “Electronic signal processing for fiber-optic communication,” IEEE LEOS Newsletters 23, 11–15 (2009).

2008 (2)

Y.-S. Wu and J.-W. Shi, “Dynamic analysis of high-power and high-speed near-ballistic unitraveling carrier photodiodes at W-band,” IEEE Photon. Technol. Lett. 20(13), 1160–1162 (2008).
[CrossRef]

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

2007 (1)

Q. Zou, A. Tarighat, and A. H. Sayed, “Performance analysis of multiband OFDM UWB communications with application to range improvement,” IEEE Trans. Vehicular Technol. 56(6), 3864–3878 (2007).
[CrossRef]

2005 (1)

Alves, T.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Beltran, M.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Cartaxo, A.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Cartledge, J.

J. Cartledge, D. Krause, K. Roberts, C. Laperle, D. McGhan, H. Sun, K. Wu, M. O’Sullivan, and Y. Jiang, “Electronic signal processing for fiber-optic communication,” IEEE LEOS Newsletters 23, 11–15 (2009).

Chang, G.-K.

A. Chowdhury, H.-C. Chien, Y.-T. Hsueh, and G.-K. Chang, “Advanced system technologies and field demonstration for in-building optical-wireless network with integrated broadband services,” J. Lightwave Technol. 27(12), 1920–1927 (2009).
[CrossRef]

Y.-T. Hsueh, Z. Jia, H.-C. Chien, J. Yu, and G.-K. Chang, “A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator,” IEEE Photon. Technol. Lett. 21(18), 1338–1340 (2009).
[CrossRef]

Chang, Y.-C.

Chen, J.

F.-M. Kuo, J.-W. Shi, S.-N. Wang, N.-W. Chen, P.-T. Shih, C.-T. Lin, W.-J. Jiang, E.-Z. Wong, J. Chen, and S. Chi, “W-band wireless data transmission by the integration of a near-ballistic uni-traveling-carrier photodiode (NBUTC-PD) with a horn antenna fed by a Quasi-Yagi radiator,” IEEE Electron Device Lett. 30(11), 1167–1169 (2009).
[CrossRef]

Chen, N.-W.

F.-M. Kuo, J.-W. Shi, S.-N. Wang, N.-W. Chen, P.-T. Shih, C.-T. Lin, W.-J. Jiang, E.-Z. Wong, J. Chen, and S. Chi, “W-band wireless data transmission by the integration of a near-ballistic uni-traveling-carrier photodiode (NBUTC-PD) with a horn antenna fed by a Quasi-Yagi radiator,” IEEE Electron Device Lett. 30(11), 1167–1169 (2009).
[CrossRef]

Chi, S.

F.-M. Kuo, J.-W. Shi, S.-N. Wang, N.-W. Chen, P.-T. Shih, C.-T. Lin, W.-J. Jiang, E.-Z. Wong, J. Chen, and S. Chi, “W-band wireless data transmission by the integration of a near-ballistic uni-traveling-carrier photodiode (NBUTC-PD) with a horn antenna fed by a Quasi-Yagi radiator,” IEEE Electron Device Lett. 30(11), 1167–1169 (2009).
[CrossRef]

Chien, H.-C.

A. Chowdhury, H.-C. Chien, Y.-T. Hsueh, and G.-K. Chang, “Advanced system technologies and field demonstration for in-building optical-wireless network with integrated broadband services,” J. Lightwave Technol. 27(12), 1920–1927 (2009).
[CrossRef]

Y.-T. Hsueh, Z. Jia, H.-C. Chien, J. Yu, and G.-K. Chang, “A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator,” IEEE Photon. Technol. Lett. 21(18), 1338–1340 (2009).
[CrossRef]

Chowdhury, A.

Hsueh, Y.-T.

A. Chowdhury, H.-C. Chien, Y.-T. Hsueh, and G.-K. Chang, “Advanced system technologies and field demonstration for in-building optical-wireless network with integrated broadband services,” J. Lightwave Technol. 27(12), 1920–1927 (2009).
[CrossRef]

Y.-T. Hsueh, Z. Jia, H.-C. Chien, J. Yu, and G.-K. Chang, “A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator,” IEEE Photon. Technol. Lett. 21(18), 1338–1340 (2009).
[CrossRef]

Jia, Z.

Y.-T. Hsueh, Z. Jia, H.-C. Chien, J. Yu, and G.-K. Chang, “A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator,” IEEE Photon. Technol. Lett. 21(18), 1338–1340 (2009).
[CrossRef]

Jiang, W.-J.

F.-M. Kuo, J.-W. Shi, S.-N. Wang, N.-W. Chen, P.-T. Shih, C.-T. Lin, W.-J. Jiang, E.-Z. Wong, J. Chen, and S. Chi, “W-band wireless data transmission by the integration of a near-ballistic uni-traveling-carrier photodiode (NBUTC-PD) with a horn antenna fed by a Quasi-Yagi radiator,” IEEE Electron Device Lett. 30(11), 1167–1169 (2009).
[CrossRef]

Jiang, Y.

J. Cartledge, D. Krause, K. Roberts, C. Laperle, D. McGhan, H. Sun, K. Wu, M. O’Sullivan, and Y. Jiang, “Electronic signal processing for fiber-optic communication,” IEEE LEOS Newsletters 23, 11–15 (2009).

Krause, D.

J. Cartledge, D. Krause, K. Roberts, C. Laperle, D. McGhan, H. Sun, K. Wu, M. O’Sullivan, and Y. Jiang, “Electronic signal processing for fiber-optic communication,” IEEE LEOS Newsletters 23, 11–15 (2009).

Kuo, F.-M.

F.-M. Kuo, J.-W. Shi, S.-N. Wang, N.-W. Chen, P.-T. Shih, C.-T. Lin, W.-J. Jiang, E.-Z. Wong, J. Chen, and S. Chi, “W-band wireless data transmission by the integration of a near-ballistic uni-traveling-carrier photodiode (NBUTC-PD) with a horn antenna fed by a Quasi-Yagi radiator,” IEEE Electron Device Lett. 30(11), 1167–1169 (2009).
[CrossRef]

Laperle, C.

J. Cartledge, D. Krause, K. Roberts, C. Laperle, D. McGhan, H. Sun, K. Wu, M. O’Sullivan, and Y. Jiang, “Electronic signal processing for fiber-optic communication,” IEEE LEOS Newsletters 23, 11–15 (2009).

Lin, C.-T.

F.-M. Kuo, J.-W. Shi, S.-N. Wang, N.-W. Chen, P.-T. Shih, C.-T. Lin, W.-J. Jiang, E.-Z. Wong, J. Chen, and S. Chi, “W-band wireless data transmission by the integration of a near-ballistic uni-traveling-carrier photodiode (NBUTC-PD) with a horn antenna fed by a Quasi-Yagi radiator,” IEEE Electron Device Lett. 30(11), 1167–1169 (2009).
[CrossRef]

Lin, G.-R.

Liu, T.-A.

Llorente, R.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Marti, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

McGhan, D.

J. Cartledge, D. Krause, K. Roberts, C. Laperle, D. McGhan, H. Sun, K. Wu, M. O’Sullivan, and Y. Jiang, “Electronic signal processing for fiber-optic communication,” IEEE LEOS Newsletters 23, 11–15 (2009).

Morant, M.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

O’Sullivan, M.

J. Cartledge, D. Krause, K. Roberts, C. Laperle, D. McGhan, H. Sun, K. Wu, M. O’Sullivan, and Y. Jiang, “Electronic signal processing for fiber-optic communication,” IEEE LEOS Newsletters 23, 11–15 (2009).

Pan, C.-L.

Perez, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Roberts, K.

J. Cartledge, D. Krause, K. Roberts, C. Laperle, D. McGhan, H. Sun, K. Wu, M. O’Sullivan, and Y. Jiang, “Electronic signal processing for fiber-optic communication,” IEEE LEOS Newsletters 23, 11–15 (2009).

Sayed, A. H.

Q. Zou, A. Tarighat, and A. H. Sayed, “Performance analysis of multiband OFDM UWB communications with application to range improvement,” IEEE Trans. Vehicular Technol. 56(6), 3864–3878 (2007).
[CrossRef]

Shi, J.-W.

F.-M. Kuo, J.-W. Shi, S.-N. Wang, N.-W. Chen, P.-T. Shih, C.-T. Lin, W.-J. Jiang, E.-Z. Wong, J. Chen, and S. Chi, “W-band wireless data transmission by the integration of a near-ballistic uni-traveling-carrier photodiode (NBUTC-PD) with a horn antenna fed by a Quasi-Yagi radiator,” IEEE Electron Device Lett. 30(11), 1167–1169 (2009).
[CrossRef]

Y.-S. Wu and J.-W. Shi, “Dynamic analysis of high-power and high-speed near-ballistic unitraveling carrier photodiodes at W-band,” IEEE Photon. Technol. Lett. 20(13), 1160–1162 (2008).
[CrossRef]

Shih, P.-T.

F.-M. Kuo, J.-W. Shi, S.-N. Wang, N.-W. Chen, P.-T. Shih, C.-T. Lin, W.-J. Jiang, E.-Z. Wong, J. Chen, and S. Chi, “W-band wireless data transmission by the integration of a near-ballistic uni-traveling-carrier photodiode (NBUTC-PD) with a horn antenna fed by a Quasi-Yagi radiator,” IEEE Electron Device Lett. 30(11), 1167–1169 (2009).
[CrossRef]

Sun, H.

J. Cartledge, D. Krause, K. Roberts, C. Laperle, D. McGhan, H. Sun, K. Wu, M. O’Sullivan, and Y. Jiang, “Electronic signal processing for fiber-optic communication,” IEEE LEOS Newsletters 23, 11–15 (2009).

Tarighat, A.

Q. Zou, A. Tarighat, and A. H. Sayed, “Performance analysis of multiband OFDM UWB communications with application to range improvement,” IEEE Trans. Vehicular Technol. 56(6), 3864–3878 (2007).
[CrossRef]

Wang, S.-N.

F.-M. Kuo, J.-W. Shi, S.-N. Wang, N.-W. Chen, P.-T. Shih, C.-T. Lin, W.-J. Jiang, E.-Z. Wong, J. Chen, and S. Chi, “W-band wireless data transmission by the integration of a near-ballistic uni-traveling-carrier photodiode (NBUTC-PD) with a horn antenna fed by a Quasi-Yagi radiator,” IEEE Electron Device Lett. 30(11), 1167–1169 (2009).
[CrossRef]

Wong, E.-Z.

F.-M. Kuo, J.-W. Shi, S.-N. Wang, N.-W. Chen, P.-T. Shih, C.-T. Lin, W.-J. Jiang, E.-Z. Wong, J. Chen, and S. Chi, “W-band wireless data transmission by the integration of a near-ballistic uni-traveling-carrier photodiode (NBUTC-PD) with a horn antenna fed by a Quasi-Yagi radiator,” IEEE Electron Device Lett. 30(11), 1167–1169 (2009).
[CrossRef]

Wu, K.

J. Cartledge, D. Krause, K. Roberts, C. Laperle, D. McGhan, H. Sun, K. Wu, M. O’Sullivan, and Y. Jiang, “Electronic signal processing for fiber-optic communication,” IEEE LEOS Newsletters 23, 11–15 (2009).

Wu, Y.-S.

Y.-S. Wu and J.-W. Shi, “Dynamic analysis of high-power and high-speed near-ballistic unitraveling carrier photodiodes at W-band,” IEEE Photon. Technol. Lett. 20(13), 1160–1162 (2008).
[CrossRef]

Yu, J.

Y.-T. Hsueh, Z. Jia, H.-C. Chien, J. Yu, and G.-K. Chang, “A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator,” IEEE Photon. Technol. Lett. 21(18), 1338–1340 (2009).
[CrossRef]

Zou, Q.

Q. Zou, A. Tarighat, and A. H. Sayed, “Performance analysis of multiband OFDM UWB communications with application to range improvement,” IEEE Trans. Vehicular Technol. 56(6), 3864–3878 (2007).
[CrossRef]

IEEE Electron Device Lett. (1)

F.-M. Kuo, J.-W. Shi, S.-N. Wang, N.-W. Chen, P.-T. Shih, C.-T. Lin, W.-J. Jiang, E.-Z. Wong, J. Chen, and S. Chi, “W-band wireless data transmission by the integration of a near-ballistic uni-traveling-carrier photodiode (NBUTC-PD) with a horn antenna fed by a Quasi-Yagi radiator,” IEEE Electron Device Lett. 30(11), 1167–1169 (2009).
[CrossRef]

IEEE LEOS Newsletters (1)

J. Cartledge, D. Krause, K. Roberts, C. Laperle, D. McGhan, H. Sun, K. Wu, M. O’Sullivan, and Y. Jiang, “Electronic signal processing for fiber-optic communication,” IEEE LEOS Newsletters 23, 11–15 (2009).

IEEE Photon. Technol. Lett. (3)

Y.-S. Wu and J.-W. Shi, “Dynamic analysis of high-power and high-speed near-ballistic unitraveling carrier photodiodes at W-band,” IEEE Photon. Technol. Lett. 20(13), 1160–1162 (2008).
[CrossRef]

Y.-T. Hsueh, Z. Jia, H.-C. Chien, J. Yu, and G.-K. Chang, “A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator,” IEEE Photon. Technol. Lett. 21(18), 1338–1340 (2009).
[CrossRef]

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

IEEE Trans. Vehicular Technol. (1)

Q. Zou, A. Tarighat, and A. H. Sayed, “Performance analysis of multiband OFDM UWB communications with application to range improvement,” IEEE Trans. Vehicular Technol. 56(6), 3864–3878 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Other (3)

H. Togo, P.-C. P. Sah, N. Shimizu, and T. Nagatsuma, “Gigabit impulse radio link using photonic signal-generation techniques,” European Microwave Conference 2005, 1, 4–7

C. Duan, G. Pekhteryev, J. Fang, Y. Nakache, J. Zhang, K. Tajima, Y. Nishioka, and H. Hirai, “Transmitting multiple HD video streams over UWB links,” in Proc. CCNC’06, Las Vegas, NV, 2006, 2, 691–695.

T. Lunttila, S. Iraji, and H. Berg, “Advanced coding schemes for a multi-band OFDM ultrawideband system towards 1 Gbps,” in Proc. CCNC’06, Las Vegas, NV, 2006, 1, 553–557.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Concept of UWB signal distribution in the FTTA system for in-building applications.

Fig. 2
Fig. 2

Photograph of the novel W-band NBUTC-PD used for the UWB-IR system.

Fig. 3
Fig. 3

Experimental setup of the UWB-IR FTTA system using (a) external modulation and (b) direct modulation. MLL: mode-locked laser, MZM: Mach-Zehnder modulator, SSMF: standard single mode fiber, EDFA: erbium doped fiber amplifier, VOA: variable optical attenuator.

Fig. 4
Fig. 4

Received RF spectra measured at the Rx side using (a) before and (b) after the power detector.

Fig. 5
Fig. 5

The measured optical pulse by using 50 GHz photodiode (a) without fiber link, (b) 250 m SSMF, and (c) 250 m SSMF and 50 m DCF.

Fig. 6
Fig. 6

Measured BER vs. photocurrent at antenna-to-antenna wireless transmission distances of (a) 20 cm and (b) 160 cm.

Fig. 7
Fig. 7

Measured 1.5 Gb/s eye patterns at (a) back-to-back with external modulation, (b) 250 m SSMF + 50m DCF with external modulation, (c) 250 m SSMF + 50m DCF with 1,024 split-ratio, external modulation and (d) 250 m SSMF + 50m DCF with 1,024 split-ratio, direct modulation. The antenna-to-antenna transmission distances are 20 cm.

Metrics