Abstract

Linear and nonlinear characteristics of devices using millimeter-scale spools of highly nonlinear fiber are experimentally investigated within 2000-2400nm spectral range. Coils with radius larger than 3.5 mm indicate that macro-bending induced radiation loss is negligible up to 2400nm. Devices with smaller diameter coiling resulted in macro-bending losses that dominate over micro-bending losses beyond 2200nm. A tunable short-wave infrared source was constructed using a coin-sized fiber module to demonstrate an efficient nonlinear conversion from 1.26 to 2.2 μm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Govind, Agrawal, “Nonlinear Fiber Optics”, Academic Press, Fourth Edition (2007).
  2. P. A. Andrekson, N. A. Olsson, J. R. Simpson, T. Tanbun-Ek, R. A. Logan, and M. Haner, “16 Gbit/s all-optical demultiplexing using four-wave mixing,” Electron. Lett. 27(11), 922–924 (1991).
    [CrossRef]
  3. S. Radic and C.J. McKinstrie, “Optical Amplification and Signal Processing in Highly Nonlinear Optical Fiber,” IEICE Trans. Electron., EE88-C, 859–869 (2005).
  4. G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, “High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator,” Opt. Express 15(6), 2947–2952 (2007).
    [CrossRef] [PubMed]
  5. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal Regeneration Using Low-Power Four-Wave Mixing on Silicon Chip,” Nat. Photonics 2(1), 35–38 (2008).
    [CrossRef]
  6. M. Takahashi, M. Tadakuma, J. Hiroishi, Y. Mimura, R. Sugizaki, and T. Yagi, “Recent advances in ultra-compact highly nonlinear fibers and their applications,” 33rd European Conference and Exhibition on Optical Communication, ECOC 2007, Berlin (2007).
  7. M. Takahashi, Y. Mimura, J. Hiroishi, R. Sugizaki, M. Sakano, and T. Yagi, “Study of downsized silica highly nonlinear fiber,” 32nd European Conference and Exhibition on Optical Communication, ECOC 2006, Cannes (2006).
  8. M. Takahashi, M. Tadakuma, J. Hiroishi, R. Sugizaki, and T. Yagi, “Efficient supercontinuum generation in ultra compact silica highly nonlinear fiber,” on Optical Communication Conference, OFC 2006, Anaheim, CA (2006).
  9. M. Takahashi, Y. Mimura, J. Hiroishi, M. Tadakuma, R. Sugizaki, M. Sakano, and T. Yagi, “Investigation of a Downsized Silica Highly Nonlinear Fiber,” J. Lightwave Technol. 25(8), 2103–2107 (2007).
    [CrossRef]
  10. M. Hirano, “Highly nonlinear fibers and their applications,” NMIJ-BIPM Joint Workshop 2007 Optical Frequency Comb -Comb, Fiber and Metrology -Tsukuba, Japan, 2007.
  11. J. D. Shephard, W. N. Macpherson, R. R. J. Maier, J. D. C. Jones, D. P. Hand, M. Mohebbi, A. K. George, P. J. Roberts, and J. C. Knight, “Single-mode mid-IR guidance in a hollow-core photonic crystal fiber,” Opt. Express 13(18), 7139–7144 (2005).
    [CrossRef] [PubMed]
  12. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5(6), 273–275 (1980).
    [CrossRef] [PubMed]
  13. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5(6), 273–275 (1980).
    [CrossRef] [PubMed]
  14. A. M. Smith, “Birefringence induced by bends and twists in single-mode optical fiber,” Appl. Opt. 19(15), 2606–2611 (1980).
    [CrossRef] [PubMed]
  15. D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am. 66(4), 311–320 (1976).
    [CrossRef]
  16. U. L. Block, M. J. F. Digonnet, M. M. Fejer, and V. Dangui, “Bending-induced birefringence of optical fiber cladding modes,” J. Lightwave Technol. 24(6), 2336–2339 (2006).
    [CrossRef]
  17. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fibers,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  18. J. M. Chavez Boggio, J. R. Windmiller, M. Knutzen, R. Jiang, C. Bres, N. Alic, B. Stossel, K. Rottwitt, and S. Radic, “730-nm optical parametric conversion from near- to short-wave infrared band,” Opt. Express 16(8), 5435–5443 (2008).
    [CrossRef] [PubMed]

2008 (2)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal Regeneration Using Low-Power Four-Wave Mixing on Silicon Chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

J. M. Chavez Boggio, J. R. Windmiller, M. Knutzen, R. Jiang, C. Bres, N. Alic, B. Stossel, K. Rottwitt, and S. Radic, “730-nm optical parametric conversion from near- to short-wave infrared band,” Opt. Express 16(8), 5435–5443 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fibers,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

U. L. Block, M. J. F. Digonnet, M. M. Fejer, and V. Dangui, “Bending-induced birefringence of optical fiber cladding modes,” J. Lightwave Technol. 24(6), 2336–2339 (2006).
[CrossRef]

2005 (1)

1991 (1)

P. A. Andrekson, N. A. Olsson, J. R. Simpson, T. Tanbun-Ek, R. A. Logan, and M. Haner, “16 Gbit/s all-optical demultiplexing using four-wave mixing,” Electron. Lett. 27(11), 922–924 (1991).
[CrossRef]

1980 (3)

1976 (1)

Alic, N.

Andrekson, P. A.

P. A. Andrekson, N. A. Olsson, J. R. Simpson, T. Tanbun-Ek, R. A. Logan, and M. Haner, “16 Gbit/s all-optical demultiplexing using four-wave mixing,” Electron. Lett. 27(11), 922–924 (1991).
[CrossRef]

Block, U. L.

Bres, C.

Chavez Boggio, J. M.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fibers,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Dangui, V.

Digonnet, M. J. F.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fibers,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Eickhoff, W.

Fejer, M. M.

Foster, M. A.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal Regeneration Using Low-Power Four-Wave Mixing on Silicon Chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Gaeta, A. L.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal Regeneration Using Low-Power Four-Wave Mixing on Silicon Chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fibers,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

George, A. K.

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal Regeneration Using Low-Power Four-Wave Mixing on Silicon Chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Hand, D. P.

Haner, M.

P. A. Andrekson, N. A. Olsson, J. R. Simpson, T. Tanbun-Ek, R. A. Logan, and M. Haner, “16 Gbit/s all-optical demultiplexing using four-wave mixing,” Electron. Lett. 27(11), 922–924 (1991).
[CrossRef]

Harvey, J. D.

Hiroishi, J.

Jiang, R.

Jones, J. D. C.

Knight, J. C.

Knutzen, M.

Leonhardt, R.

Lipson, M.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal Regeneration Using Low-Power Four-Wave Mixing on Silicon Chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Logan, R. A.

P. A. Andrekson, N. A. Olsson, J. R. Simpson, T. Tanbun-Ek, R. A. Logan, and M. Haner, “16 Gbit/s all-optical demultiplexing using four-wave mixing,” Electron. Lett. 27(11), 922–924 (1991).
[CrossRef]

Macpherson, W. N.

Maier, R. R. J.

Marcuse, D.

Marie, V.

Mimura, Y.

Mohebbi, M.

Murdoch, S. G.

Olsson, N. A.

P. A. Andrekson, N. A. Olsson, J. R. Simpson, T. Tanbun-Ek, R. A. Logan, and M. Haner, “16 Gbit/s all-optical demultiplexing using four-wave mixing,” Electron. Lett. 27(11), 922–924 (1991).
[CrossRef]

Radic, S.

Rashleigh, S. C.

Roberts, P. J.

Rottwitt, K.

Sakano, M.

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal Regeneration Using Low-Power Four-Wave Mixing on Silicon Chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Shephard, J. D.

Simpson, J. R.

P. A. Andrekson, N. A. Olsson, J. R. Simpson, T. Tanbun-Ek, R. A. Logan, and M. Haner, “16 Gbit/s all-optical demultiplexing using four-wave mixing,” Electron. Lett. 27(11), 922–924 (1991).
[CrossRef]

Smith, A. M.

Stossel, B.

Sugizaki, R.

Tadakuma, M.

Takahashi, M.

Tanbun-Ek, T.

P. A. Andrekson, N. A. Olsson, J. R. Simpson, T. Tanbun-Ek, R. A. Logan, and M. Haner, “16 Gbit/s all-optical demultiplexing using four-wave mixing,” Electron. Lett. 27(11), 922–924 (1991).
[CrossRef]

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal Regeneration Using Low-Power Four-Wave Mixing on Silicon Chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Ulrich, R.

Windmiller, J. R.

Wong, G. K. L.

Yagi, T.

Appl. Opt. (1)

Electron. Lett. (1)

P. A. Andrekson, N. A. Olsson, J. R. Simpson, T. Tanbun-Ek, R. A. Logan, and M. Haner, “16 Gbit/s all-optical demultiplexing using four-wave mixing,” Electron. Lett. 27(11), 922–924 (1991).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

Nat. Photonics (1)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal Regeneration Using Low-Power Four-Wave Mixing on Silicon Chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fibers,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Other (6)

P. Govind, Agrawal, “Nonlinear Fiber Optics”, Academic Press, Fourth Edition (2007).

S. Radic and C.J. McKinstrie, “Optical Amplification and Signal Processing in Highly Nonlinear Optical Fiber,” IEICE Trans. Electron., EE88-C, 859–869 (2005).

M. Takahashi, M. Tadakuma, J. Hiroishi, Y. Mimura, R. Sugizaki, and T. Yagi, “Recent advances in ultra-compact highly nonlinear fibers and their applications,” 33rd European Conference and Exhibition on Optical Communication, ECOC 2007, Berlin (2007).

M. Takahashi, Y. Mimura, J. Hiroishi, R. Sugizaki, M. Sakano, and T. Yagi, “Study of downsized silica highly nonlinear fiber,” 32nd European Conference and Exhibition on Optical Communication, ECOC 2006, Cannes (2006).

M. Takahashi, M. Tadakuma, J. Hiroishi, R. Sugizaki, and T. Yagi, “Efficient supercontinuum generation in ultra compact silica highly nonlinear fiber,” on Optical Communication Conference, OFC 2006, Anaheim, CA (2006).

M. Hirano, “Highly nonlinear fibers and their applications,” NMIJ-BIPM Joint Workshop 2007 Optical Frequency Comb -Comb, Fiber and Metrology -Tsukuba, Japan, 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for attenuation characterization using a supercontinuum source. AM: amplitude modulator. PC: polarization controller. ATT: variable attenuator.

Fig. 2
Fig. 2

Output spectra before and after fiber under test. (a) Unspooled SMF, (b) Unspooled HNLF.

Fig. 3
Fig. 3

Output spectra before and after fiber under test for a spooling radius of (a) 4 mm, (b) 2 mm, and (c) 1.5 mm.

Fig. 4
Fig. 4

Top: Attenuation measurement of spooled SMF and HNLF for several indicated radii. Unspooled attenuation is shown for comparison. In all cases the fiber length was 8 m. Bottom: spooled HNLF segment.

Fig. 5
Fig. 5

SC generation in unspooled and spooled HNLF with a length of 8 m and (a) 3.5 mm radius, (b) 6 mm radius.

Fig. 6
Fig. 6

Wavelength conversion generation in (a) spooled and (b) unspooled HNLF with a length of 8 m (λ0 = 1583 nm, S 0 = 0.027 ps/nm2-km, Aeff = 11 μm2).

Fig. 7
Fig. 7

Wavelength conversion in HNLF (a) spooled with 4 mm diameter and (b) unspooled.

Metrics