Abstract

A novel tapered dielectric waveguide solar concentrator is proposed for compound semiconductor solar cells utilizing optical fiber preform. Its light collecting capability is numerically simulated and experimentally demonstrated for feasibility and potential assessments. Utilizing tapered shape of an optical fiber preform with a step-index profile, low loss guidance was enhanced and the limitation in the acceptance angle of solar radiation was alleviated by an order of magnitude. Using a solar simulator the device performances were experimentally investigated and discussed in terms of the photocurrent improvements. Total acceptance angle exceeding ± 6° was experimentally achieved sustaining a high solar flux.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Lerchenmuller, A. Hakenjos, I. Heile, B. Burger, and O. Stalter, “From FLATCON pilot systems to the first power plant,” presented at the International conference on solar concentrators for the generation of electricity or hydrogen, El Escorial, Spain, 12–16, Mar. 2007.
  2. S. Horne, G. Conley, J. Gordon, D. Fork, P. Meada, E. Schrader, and T. Zimmermann, “A solid 500 sun compound concentrator PV design,” in Proceedings of IEEE 4th World Conference on Photovoltaic Energy Conversion (Institute of Electrical and Electronics Engineers, New York, 2006), pp. 694–697.
  3. O. Korech, J. M. Gordon, E. A. Katz, D. Feuermann, and N. Eisenberg, “Dielectric microconcentrators for efficiency enhancement in concentrator solar cells,” Opt. Lett. 32, 2789–2791 (2007).
    [CrossRef] [PubMed]
  4. R. Winston and J. M. Gordon, “Planar concentrators near the étendue limit,” Opt. Lett. 30, 2617–2619 (2005).
    [CrossRef] [PubMed]
  5. D. Jenkins, R. Winston, J. Bliss, J. O'Gallagher, A. Lewandowski, and C. Bingham, “Solar concentration of 50,000 achieved with output power approaching 1kW,” J. Sol. Energy Eng. 118, 141–145 (1996).
    [CrossRef]
  6. X. Ning, R. Winston, and J. O’Gallagher, “Dielectric totally internally reflecting concentrators,” Appl. Opt. 26, 300–305 (1987).
    [CrossRef] [PubMed]
  7. A. Cutolo, L. Carlomusto, F. Reale, and I. Rendina, “Tapered and inhomogeneous dielectric light concentrators,” Appl. Opt. 29, 1353–1364 (1990).
    [CrossRef] [PubMed]
  8. M. Blanc, J. Pollard, G. Marchand, and R. Henri, “Multi-directional non-imaging radiations concentrator and/or deconcentrator device,” US Patent 4697867 (1987).
  9. D. Feuermann, J. M. Gordon, and M. Huleihil, “Solar fiber-optic mini-dish concentrators: first experimental results and field experience,” Sol. Energy 72, 459–472 (2002).
    [CrossRef]
  10. E. A. Katz, J. M. Gordon, W. Tassew, and D. Feuermann, “Photovoltaic characterization of concentrator solar cells by localized irradiation,” J. Appl. Phys. 100, 044514 (2006).
    [CrossRef]
  11. T. J. Suleski and R. D. Te Kolste, “Fabrication trends for free-space microoptics,” J. Lightwave Technol. 23, 633–646 (2005).
    [CrossRef]
  12. S. R. Nagel, J. B. Macchesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18, 459–476 (1982).
    [CrossRef]
  13. International Organization for Standardization, “Solar energy-Reference solar spectral irradiance at the ground at different receiving conditions-Part 1: Direct normal and hemispherical solar irradiance for air mass 1.5,” ISO 9845, 1 (1992).
  14. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23, 4486–4493 (1984).
    [CrossRef] [PubMed]
  15. R. Winston, J. C. Minano, and P. Benitez, Nonimaging optics (Elservier, New York, 2005), Chapt. 2.
  16. R. Winston and W. T. Welford, “Geometrical vector flux and some new nonimaging concentrator,” J. Opt. Soc. Am. 69, 532–536 (1979).
    [CrossRef]
  17. J. M. Gordon, “Complementary construction of ideal nonimaging concentrators and its applications,” Appl. Opt. 35, 5677–5682 (1996).
    [CrossRef] [PubMed]

2007 (1)

2006 (1)

E. A. Katz, J. M. Gordon, W. Tassew, and D. Feuermann, “Photovoltaic characterization of concentrator solar cells by localized irradiation,” J. Appl. Phys. 100, 044514 (2006).
[CrossRef]

2005 (2)

2002 (1)

D. Feuermann, J. M. Gordon, and M. Huleihil, “Solar fiber-optic mini-dish concentrators: first experimental results and field experience,” Sol. Energy 72, 459–472 (2002).
[CrossRef]

1996 (2)

D. Jenkins, R. Winston, J. Bliss, J. O'Gallagher, A. Lewandowski, and C. Bingham, “Solar concentration of 50,000 achieved with output power approaching 1kW,” J. Sol. Energy Eng. 118, 141–145 (1996).
[CrossRef]

J. M. Gordon, “Complementary construction of ideal nonimaging concentrators and its applications,” Appl. Opt. 35, 5677–5682 (1996).
[CrossRef] [PubMed]

1990 (1)

1987 (1)

1984 (1)

1982 (1)

S. R. Nagel, J. B. Macchesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18, 459–476 (1982).
[CrossRef]

1979 (1)

Bingham, C.

D. Jenkins, R. Winston, J. Bliss, J. O'Gallagher, A. Lewandowski, and C. Bingham, “Solar concentration of 50,000 achieved with output power approaching 1kW,” J. Sol. Energy Eng. 118, 141–145 (1996).
[CrossRef]

Bliss, J.

D. Jenkins, R. Winston, J. Bliss, J. O'Gallagher, A. Lewandowski, and C. Bingham, “Solar concentration of 50,000 achieved with output power approaching 1kW,” J. Sol. Energy Eng. 118, 141–145 (1996).
[CrossRef]

Carlomusto, L.

Cutolo, A.

Eisenberg, N.

Feuermann, D.

O. Korech, J. M. Gordon, E. A. Katz, D. Feuermann, and N. Eisenberg, “Dielectric microconcentrators for efficiency enhancement in concentrator solar cells,” Opt. Lett. 32, 2789–2791 (2007).
[CrossRef] [PubMed]

E. A. Katz, J. M. Gordon, W. Tassew, and D. Feuermann, “Photovoltaic characterization of concentrator solar cells by localized irradiation,” J. Appl. Phys. 100, 044514 (2006).
[CrossRef]

D. Feuermann, J. M. Gordon, and M. Huleihil, “Solar fiber-optic mini-dish concentrators: first experimental results and field experience,” Sol. Energy 72, 459–472 (2002).
[CrossRef]

Fleming, J. W.

Gordon, J. M.

O. Korech, J. M. Gordon, E. A. Katz, D. Feuermann, and N. Eisenberg, “Dielectric microconcentrators for efficiency enhancement in concentrator solar cells,” Opt. Lett. 32, 2789–2791 (2007).
[CrossRef] [PubMed]

E. A. Katz, J. M. Gordon, W. Tassew, and D. Feuermann, “Photovoltaic characterization of concentrator solar cells by localized irradiation,” J. Appl. Phys. 100, 044514 (2006).
[CrossRef]

R. Winston and J. M. Gordon, “Planar concentrators near the étendue limit,” Opt. Lett. 30, 2617–2619 (2005).
[CrossRef] [PubMed]

D. Feuermann, J. M. Gordon, and M. Huleihil, “Solar fiber-optic mini-dish concentrators: first experimental results and field experience,” Sol. Energy 72, 459–472 (2002).
[CrossRef]

J. M. Gordon, “Complementary construction of ideal nonimaging concentrators and its applications,” Appl. Opt. 35, 5677–5682 (1996).
[CrossRef] [PubMed]

Huleihil, M.

D. Feuermann, J. M. Gordon, and M. Huleihil, “Solar fiber-optic mini-dish concentrators: first experimental results and field experience,” Sol. Energy 72, 459–472 (2002).
[CrossRef]

Jenkins, D.

D. Jenkins, R. Winston, J. Bliss, J. O'Gallagher, A. Lewandowski, and C. Bingham, “Solar concentration of 50,000 achieved with output power approaching 1kW,” J. Sol. Energy Eng. 118, 141–145 (1996).
[CrossRef]

Katz, E. A.

O. Korech, J. M. Gordon, E. A. Katz, D. Feuermann, and N. Eisenberg, “Dielectric microconcentrators for efficiency enhancement in concentrator solar cells,” Opt. Lett. 32, 2789–2791 (2007).
[CrossRef] [PubMed]

E. A. Katz, J. M. Gordon, W. Tassew, and D. Feuermann, “Photovoltaic characterization of concentrator solar cells by localized irradiation,” J. Appl. Phys. 100, 044514 (2006).
[CrossRef]

Korech, O.

Lewandowski, A.

D. Jenkins, R. Winston, J. Bliss, J. O'Gallagher, A. Lewandowski, and C. Bingham, “Solar concentration of 50,000 achieved with output power approaching 1kW,” J. Sol. Energy Eng. 118, 141–145 (1996).
[CrossRef]

Macchesney, J. B.

S. R. Nagel, J. B. Macchesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18, 459–476 (1982).
[CrossRef]

Nagel, S. R.

S. R. Nagel, J. B. Macchesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18, 459–476 (1982).
[CrossRef]

Ning, X.

O’Gallagher, J.

O'Gallagher, J.

D. Jenkins, R. Winston, J. Bliss, J. O'Gallagher, A. Lewandowski, and C. Bingham, “Solar concentration of 50,000 achieved with output power approaching 1kW,” J. Sol. Energy Eng. 118, 141–145 (1996).
[CrossRef]

Reale, F.

Rendina, I.

Suleski, T. J.

Tassew, W.

E. A. Katz, J. M. Gordon, W. Tassew, and D. Feuermann, “Photovoltaic characterization of concentrator solar cells by localized irradiation,” J. Appl. Phys. 100, 044514 (2006).
[CrossRef]

Te Kolste, R. D.

Walker, K. L.

S. R. Nagel, J. B. Macchesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18, 459–476 (1982).
[CrossRef]

Welford, W. T.

Winston, R.

Appl. Opt. (4)

IEEE J. Quantum Electron. (1)

S. R. Nagel, J. B. Macchesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18, 459–476 (1982).
[CrossRef]

J. Appl. Phys. (1)

E. A. Katz, J. M. Gordon, W. Tassew, and D. Feuermann, “Photovoltaic characterization of concentrator solar cells by localized irradiation,” J. Appl. Phys. 100, 044514 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Sol. Energy Eng. (1)

D. Jenkins, R. Winston, J. Bliss, J. O'Gallagher, A. Lewandowski, and C. Bingham, “Solar concentration of 50,000 achieved with output power approaching 1kW,” J. Sol. Energy Eng. 118, 141–145 (1996).
[CrossRef]

Opt. Lett. (2)

Sol. Energy (1)

D. Feuermann, J. M. Gordon, and M. Huleihil, “Solar fiber-optic mini-dish concentrators: first experimental results and field experience,” Sol. Energy 72, 459–472 (2002).
[CrossRef]

Other (5)

M. Blanc, J. Pollard, G. Marchand, and R. Henri, “Multi-directional non-imaging radiations concentrator and/or deconcentrator device,” US Patent 4697867 (1987).

H. Lerchenmuller, A. Hakenjos, I. Heile, B. Burger, and O. Stalter, “From FLATCON pilot systems to the first power plant,” presented at the International conference on solar concentrators for the generation of electricity or hydrogen, El Escorial, Spain, 12–16, Mar. 2007.

S. Horne, G. Conley, J. Gordon, D. Fork, P. Meada, E. Schrader, and T. Zimmermann, “A solid 500 sun compound concentrator PV design,” in Proceedings of IEEE 4th World Conference on Photovoltaic Energy Conversion (Institute of Electrical and Electronics Engineers, New York, 2006), pp. 694–697.

R. Winston, J. C. Minano, and P. Benitez, Nonimaging optics (Elservier, New York, 2005), Chapt. 2.

International Organization for Standardization, “Solar energy-Reference solar spectral irradiance at the ground at different receiving conditions-Part 1: Direct normal and hemispherical solar irradiance for air mass 1.5,” ISO 9845, 1 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Structure of the proposed tapered waveguide solar concentrator (TWSC). (b) Index profile of the TWCS in Fig. 1(a). Index difference between core and cladding is given by 0.313% at the wavelength of 635 nm (c) outer diameter variation along the adiabatic taper.

Fig. 2
Fig. 2

(a) Schematic of simulation set-up. Rays are concentrated on the red circle on an entrance aperture. (b) Spectra of incident light and output result. Black squares are solar spectrum of AM 1.5G, and red circles are spectrum of the result.

Fig. 3
Fig. 3

Irradiance profiles of normal incidence in a unit of mW/mm2; (a) without core or equivalently GeO2 doping ratio χ = 0 mole %. (b) with the core of GeO2 doping ratio χ = 3 mole %. (c) with the core of GeO2 doping ratio χ = 6 mole %. (d) One dimensional irradiance profiles for different GeO2 doping levels at the line across the center. An inset shows maximum irradiances along with GeO2 doping ratio.

Fig. 4
Fig. 4

(a) Schematics of the TWSCs with various core sizes a = 11mm, 20, and 1/2 a. Total power at the tapered output of TWSC as a function of the incident angle for the TWSC; (b) with core radius = a, (c) core radius = 2a, (d) core radius = a/2.

Fig. 5
Fig. 5

(a) Structural parameters of TWSC in the axial direction; taper segment and cylinder segment. (b) Total power at the tapered output as a function of the incident angle for a TWSC without cylinder segment. The inlet shows numerical simulation results for all-silica TWSC without core. (c) Total power versus tilt angle for the TWSC. The core was doped with 3 mole % GeO2 and plots are overlaid for various cylinder segment lengths.

Fig. 6
Fig. 6

(a) Schematic of a hyperbolic concentrator. Asymptotes are shown in dashed lines. F1 and F2 are foci of hyperbolic curves. (b) Solid line is the actual shape of the proposed TWSC and dashed line is a hyperbolic curve with a focal point placed at 20.8 mm from origin.

Fig. 7
Fig. 7

(a) A solar simulator used in the experiment. (b) An experimental set-up. An III-V solar cell on heat sink is placed under the TWSC. (c) Schematic of the experiment. A numerical aperture of the TWSC is shown by a red cone.

Fig. 8
Fig. 8

Results from an III-V group solar cell; (a) I-V curves along incident angles. (b) Current densities along incident angles. An inlet shows enlarged plots in the range of incident angles from −10° to 10°.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n c o r e 2 1 = i = 1 3 [ A i S i O 2 + χ ( A i G e O 2 A i S i O 2 ) ] λ 0 2 λ 0 2 [ l i S i O 2 + χ ( l i G e O 2 l i S i O 2 ) ] 2
C max = ( n N . A . ) 2 = 1 n c o r e 2 n c l a d d i n g 2
2 a 2 c = sin θ
a c = sin ( tan 1 ( a b ) )    ( b= c 2 a 2 )

Metrics