Abstract

We propose a new laser lithographic technique with enhanced resolution. A calcite wave plate is introduced in our system to separate an input lithographic beam into two orthogonally polarized beams. After going through an imaging lens, these two beams meet again on the focal point, and generate a small interferogram that sharpens the shape of the focused beam spot. Using this phenomenon, we can overcome the diffraction limit of the imaging lens and achieve a 486-nm-linewidth.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Tiziani, S. Reichelt, C. Pruss, M. Rocktaeschel, and U. Hofbauer, “Testing of aspheric surfaces,” Proc. SPIE 4440, 109–119 (2001).
    [CrossRef]
  2. M. Haruna, M. Takahashi, K. Wakahayashi, and H. Nishihara, “Laser beam lithographed micro-Fresnel lenses,” Appl. Opt. 29(34), 5120–5126 (1990).
    [CrossRef] [PubMed]
  3. M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
    [CrossRef]
  4. A. G. Poleshchuk, E. G. Churin, V. P. Koronkevich, V. P. Korolkov, A. A. Kharissov, V. V. Cherkashin, V. P. Kiryanov, A. V. Kiryanov, S. A. Kokarev, and A. G. Verhoglyad, “Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure,” Appl. Opt. 38(8), 1295–1301 (1999).
    [CrossRef]
  5. J.-M. Asfour and A. G. Poleshchuk, “Asphere testing with a Fizeau interferometer based on a combined computer-generated hologram,” J. Opt. Soc. Am. A 23(1), 172–178 (2006).
    [CrossRef]
  6. P. Zhou and J. H. Burge, “Coupling of surface roughness to the performance of computer-generated holograms,” Appl. Opt. 46(26), 6572–6576 (2007).
    [CrossRef] [PubMed]
  7. J. H. Burge, “Fabrication of large circular diffractive optics,” in Diffractive Optics and Micro-Optics, OSA Tech. Dig. 10 (1998).
  8. J. W. Goodman, “Analog optical information processing,” in Introduction to Fourier optics, 2nd ed., (McGraw-Hill, Singapore, 1996), Chap. 4.
  9. V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett. 82(18), 3125–3127 (2003).
    [CrossRef]
  10. C. H. Lee, H. Y. Chiang, and H. Y. Mong, “Sub-diffraction-limit imaging based on the topographic contrast of differential confocal microscopy,” Opt. Lett. 28(19), 1772–1774 (2003).
    [CrossRef] [PubMed]
  11. D. Kang and D. Gweon, “Enhancement of lateral resolution in confocal self-interference microscopy,” Opt. Lett. 28(24), 2470–2472 (2003).
    [CrossRef] [PubMed]
  12. D.-I. Kim, H.-G. Rhee, J.-B. Song, and Y.-W. Lee, “Laser output stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78, 1–4 (2007).
    [CrossRef]
  13. D. K. Cohen, W. H. Gee, M. Ludeke, and J. Lewkowicz, “Automatic focus control: the astigmatic lens approach,” Appl. Opt. 23(4), 565–570 (1984).
    [CrossRef] [PubMed]
  14. H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80, 1–5 (2009).
    [CrossRef]
  15. ASME B46, 1–2002, “Terminology and measurement procedures for profiling, contact, skidless instruments,”in Surface texture (Surface roughness, waviness, and lay). (Amer. Soc. of Mech. Engrs., New York, 2003), Section 3.

2009 (1)

H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80, 1–5 (2009).
[CrossRef]

2007 (2)

D.-I. Kim, H.-G. Rhee, J.-B. Song, and Y.-W. Lee, “Laser output stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78, 1–4 (2007).
[CrossRef]

P. Zhou and J. H. Burge, “Coupling of surface roughness to the performance of computer-generated holograms,” Appl. Opt. 46(26), 6572–6576 (2007).
[CrossRef] [PubMed]

2006 (1)

2003 (3)

2001 (1)

H. J. Tiziani, S. Reichelt, C. Pruss, M. Rocktaeschel, and U. Hofbauer, “Testing of aspheric surfaces,” Proc. SPIE 4440, 109–119 (2001).
[CrossRef]

1999 (1)

1994 (1)

M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[CrossRef]

1990 (1)

1984 (1)

Asfour, J.-M.

Blanca, C. M.

V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett. 82(18), 3125–3127 (2003).
[CrossRef]

Burge, J. H.

Cherkashin, V. V.

Chiang, H. Y.

Churin, E. G.

Cohen, D. K.

Dyba, M.

V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett. 82(18), 3125–3127 (2003).
[CrossRef]

Gale, M. T.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[CrossRef]

Gee, W. H.

Gweon, D.

Haruna, M.

Hell, S. W.

V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett. 82(18), 3125–3127 (2003).
[CrossRef]

Hofbauer, U.

H. J. Tiziani, S. Reichelt, C. Pruss, M. Rocktaeschel, and U. Hofbauer, “Testing of aspheric surfaces,” Proc. SPIE 4440, 109–119 (2001).
[CrossRef]

Kang, D.

Kastrup, L.

V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett. 82(18), 3125–3127 (2003).
[CrossRef]

Kharissov, A. A.

Kim, D.-I.

H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80, 1–5 (2009).
[CrossRef]

D.-I. Kim, H.-G. Rhee, J.-B. Song, and Y.-W. Lee, “Laser output stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78, 1–4 (2007).
[CrossRef]

Kiryanov, A. V.

Kiryanov, V. P.

Kokarev, S. A.

Korolkov, V. P.

Koronkevich, V. P.

Lee, C. H.

Lee, Y.-W.

H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80, 1–5 (2009).
[CrossRef]

D.-I. Kim, H.-G. Rhee, J.-B. Song, and Y.-W. Lee, “Laser output stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78, 1–4 (2007).
[CrossRef]

Lewkowicz, J.

Ludeke, M.

Mong, H. Y.

Nishihara, H.

Pedersen, J.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[CrossRef]

Poleshchuk, A. G.

Pruss, C.

H. J. Tiziani, S. Reichelt, C. Pruss, M. Rocktaeschel, and U. Hofbauer, “Testing of aspheric surfaces,” Proc. SPIE 4440, 109–119 (2001).
[CrossRef]

Reichelt, S.

H. J. Tiziani, S. Reichelt, C. Pruss, M. Rocktaeschel, and U. Hofbauer, “Testing of aspheric surfaces,” Proc. SPIE 4440, 109–119 (2001).
[CrossRef]

Rhee, H.-G.

H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80, 1–5 (2009).
[CrossRef]

D.-I. Kim, H.-G. Rhee, J.-B. Song, and Y.-W. Lee, “Laser output stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78, 1–4 (2007).
[CrossRef]

Rocktaeschel, M.

H. J. Tiziani, S. Reichelt, C. Pruss, M. Rocktaeschel, and U. Hofbauer, “Testing of aspheric surfaces,” Proc. SPIE 4440, 109–119 (2001).
[CrossRef]

Rossi, M.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[CrossRef]

Schutz, H.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[CrossRef]

Song, J.-B.

D.-I. Kim, H.-G. Rhee, J.-B. Song, and Y.-W. Lee, “Laser output stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78, 1–4 (2007).
[CrossRef]

Takahashi, M.

Tiziani, H. J.

H. J. Tiziani, S. Reichelt, C. Pruss, M. Rocktaeschel, and U. Hofbauer, “Testing of aspheric surfaces,” Proc. SPIE 4440, 109–119 (2001).
[CrossRef]

Verhoglyad, A. G.

Wakahayashi, K.

Westphal, V.

V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett. 82(18), 3125–3127 (2003).
[CrossRef]

Zhou, P.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett. 82(18), 3125–3127 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

H. J. Tiziani, S. Reichelt, C. Pruss, M. Rocktaeschel, and U. Hofbauer, “Testing of aspheric surfaces,” Proc. SPIE 4440, 109–119 (2001).
[CrossRef]

Rev. Sci. Instrum. (2)

H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80, 1–5 (2009).
[CrossRef]

D.-I. Kim, H.-G. Rhee, J.-B. Song, and Y.-W. Lee, “Laser output stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78, 1–4 (2007).
[CrossRef]

Other (3)

ASME B46, 1–2002, “Terminology and measurement procedures for profiling, contact, skidless instruments,”in Surface texture (Surface roughness, waviness, and lay). (Amer. Soc. of Mech. Engrs., New York, 2003), Section 3.

J. H. Burge, “Fabrication of large circular diffractive optics,” in Diffractive Optics and Micro-Optics, OSA Tech. Dig. 10 (1998).

J. W. Goodman, “Analog optical information processing,” in Introduction to Fourier optics, 2nd ed., (McGraw-Hill, Singapore, 1996), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Typical CGH sample. The outer track of the CGH generally has a minimum linewidth.

Fig. 2
Fig. 2

Configuration of the proposed direct laser lithographic system.

Fig. 3
Fig. 3

Interference generator consists of a polarizer, a calcite wave plate, and an analyzer.

Fig. 4
Fig. 4

(a) Imaging relationship. Intensity profile (b) without and (c) with the interference generator on x2, y2 plane (imaging plane). Λ represents the fringe space of the interferogram. In this case, the reduction ratio of the linewidth is about 35%.

Fig. 5
Fig. 5

Contour plot of (a) I2, previous and (b) I2, proposed.

Fig. 6
Fig. 6

Linewidth change according to the direction of the interferogram. (a) Wrong and (b) right interferogram direction.

Fig. 7
Fig. 7

Fabricated results on a chromium coated surface whose thickness is slightly over 75 nm (a) without and (b) with the interference generator.

Fig. 8
Fig. 8

Photographic view of the 300-mm-diameter CGH.

Tables (1)

Tables Icon

Table 1 Measure Linewidth values. First we fabricated a circle pattern, and then measured the linewidth of the pattern from 12 difference positions (every 30°) by using the stylus.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

diffraction limit = 1.22 λ N A ,
I 1 , previous ( x 1 , y 1 ) = | U 1, previous ( x 1 , y 1 ) | 2 = | c i r c ( x 1 2 + y 1 2 ) exp [ π ( x 1 2 + y 1 2 ) ] | 2 , where c i r c ( r ) = { 1 , r < 1 0.5 , r = 1 0 , o t h e r w i s e
I 2, previous ( x 2 , y 2 ) = | U 2, previous ( x 2 , y 2 ) | 2 = | F o u r i e r T r a n s f o r m < U 1, previous ( x 1 , y 1 ) > | 2 = | J 1 ( 2 π x 2 2 + y 2 2 ) x 2 2 + y 2 2 exp [ π ( x 2 2 + y 2 2 ) | 2 ,
I 1 , proposed ( x 1 , y 1 ) = | U 1 , proposed ( x 1 , y 1 ) | 2 = | c i r c ( x 1 2 + y 1 2 ) ( 1 + cos [ 2 π Λ x 1 ) ] | 2 .
I 2 , proposed ( x 2 , y 2 ) = | U 2 , proposed ( x 2 , y 2 ) | 2 , = | J 1 ( 2 π x 2 2 + y 2 2 ) x 2 2 + y 2 2 [ δ ( x 2 ) + 1 2 δ ( x 2 1 Λ ) + 1 2 δ ( x 2 + 1 Λ ) ] | 2 .
Depth of focus (DOF) = 0.5 λ N A 2 .

Metrics