Abstract

We propose and demonstrate a pulsed-incoherent-light-injected Fabry-Perot laser diode (FP-LD) which generates incoherent return-to-zero (RZ) signals for wavelength-division-multiplexing passive optical networks. For the generation of the RZ signals, we first convert the continuous-wave (CW) amplified spontaneous emission (ASE) into an ASE pulse train with a pulse carver, spectrum-slice it into multiple channels with a waveguide grating router, and then inject them into FP-LDs for data modulation. Thanks to a wide slicing bandwidth of the injected incoherent light, the spectral linewidth of the generated RZ signals is determined by the slicing bandwidth, without being affected by the use of the RZ format. Thus, compared to incoherent non-return-to-zero (NRZ) signals generated with CW-ASE-injected FP-LDs, the RZ signals have a similar spectral linewidth but a wide timing margin between adjacent bits. Thus, the proposed transmitter can offer better dispersion tolerance than the NRZ signals. For example, our experimental demonstration performed at 1.25 Gb/s shows ~50% higher dispersion tolerance than the NRZ signals generated with CW ASE-injected FP-LDs. Despite the large slicing bandwidth of 0.67 nm for the injected ASE, we were able to transmit 1.25-Gb/s signals over 45-km standard single-mode fiber without dispersion compensation. The receiver sensitivity is also improved by 1.5 dB by using the RZ format.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Noise-suppressed mutually injected Fabry-Perot laser diodes for 10-Gb/s broadcast signal transmission in WDM passive optical networks

Sang-Hwa Yoo, Joon-Young Kim, Byung-Il Seo, and Chang-Hee Lee
Opt. Express 21(5) 6538-6546 (2013)

High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes

Zhaowen Xu, Yang Jing Wen, Wen-De Zhong, Chang-Joon Chae, Xiao-Fei Cheng, Yixin Wang, Chao Lu, and Jaya Shankar
Opt. Express 15(6) 2953-2962 (2007)

Reduction of mode partition noise of FP-LD by using Mach-Zehnder interferometer for RSOA-based DWDM applications

Sang-Hwa Yoo, Sang-Rok Moon, Myeonggyun Kye, and Chang-Hee Lee
Opt. Express 24(13) 14494-14505 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
    [Crossref]
  2. D. J. Shin, D. K. Jung, H. S. Shin, J. W. Kwon, S. Hwang, Y. Oh, and C. Shim, “Hybrid WDM/TDM-PON with wavelength-selection-free transmitters,” J. Lightwave Technol. 23(1), 187–195 (2005).
    [Crossref]
  3. K.-Y. Park, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “A theoretical model of a wavelength-locked Fabry-Perot laser diode to the externally injected narrow-band ASE,” IEEE Photon. Technol. Lett. 17(9), 1797–1799 (2005).
    [Crossref]
  4. D. J. Shin, Y. C. Keh, J. W. Kwon, E. H. Lee, J. K. Lee, and M. K. Park, “J. W. Park, Y. K. Oh, S. W. Kim, I. K. Yun, H. C. Shin, D. Heo, J. S. Lee, H. S. Shin, H. S. Kim, S. B. Park, D. K. Jung, S. Hwang, Y. J. Oh, D. H. Jang, and C. S. Shim, “Low-cost WDM-PON with colorless bidirectional transceivers,” J. Lightwave Technol. 24(1), 158–165 (2006).
  5. S.-M. Lee, S.-G. Mun, M.-H. Kim, and C.-H. Lee, “Demonstration of a long-reach DWDM-PON for consolidation of metro and access networks,” J. Lightwave Technol. 25(1), 271–276 (2007).
    [Crossref]
  6. S.-G. Mun, J.-H. Moon, H.-K. Lee, J.-Y. Kim, and C.-H. Lee, “A WDM-PON with a 40 Gb/s (32 x 1.25 Gb/s) capacity based on wavelength-locked Fabry-Perot laser diodes,” Opt. Express 16(15), 11361–11368 (2008).
    [Crossref] [PubMed]
  7. C. H. Kim, K. Lee, and S. B. Lee, “Effects of in-band crosstalk in wavelength-locked Fabry-Perot laser diode-based WDM PONs,” IEEE Photon. Technol. Lett. 21(9), 596–598 (2009).
    [Crossref]
  8. Y. S. Jang, C.-H. Lee, and Y. Chung, “Effects of crosstalk in WDM systems using spectrum-sliced light source,” IEEE Photon. Technol. Lett. 11(6), 715–717 (1999).
    [Crossref]
  9. H. Kim, H. C. Ji, and C. H. Kim, “Effects of intraband crosstalk on incoherent light using SOA-based noise suppression technique,” IEEE Photon. Technol. Lett. 18(14), 1542–1544 (2006).
    [Crossref]
  10. F. Forghieri, P. Prucnal, R. Tkach, and A. Chraplyvy, “RZ versus NRZ in nonlinear WDM systems,” IEEE Photon. Technol. Lett. 9(7), 1035–1037 (1997).
    [Crossref]
  11. F. Heismann, “Origin of clock-frequency components in NRZ-formatted optical signsls,” IEEE Photon. Technol. Lett. 15(7), 912–914 (2003).
    [Crossref]
  12. L. Hou, H. Zhu, F. Zhou, L. Wang, J. Bian, and W. Wang, “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input and output,” Semicond. Sci. Technol. 20(9), 912–916 (2005).
    [Crossref]
  13. N. M. Froberg, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. Chien, G. T. Harvey, A. Gnauck, and A. M. Johnson, “Generation of 12.5 Gbit/s soliton data stream with an integrated laser-modulator transmitter,” Electron. Lett. 30(22), 1880–1881 (1994).
    [Crossref]
  14. D. J. Shin, D. K. Jung, J. K. Lee, J. H. Lee, Y. H. Choi, Y. C. Band, H. S. Shin, J. Lee, S. T. Hwang, and Y. J. Oh, “155 Mbit/s transmission using ASE-injected Fabry-Perot laser diode in WDM-PON over 70°C temperature range,” Electron. Lett. 39(18), 1331–1332 (2003).
    [Crossref]
  15. M. J. Munroe, J. Cooper, and M. G. Raymer, “Spectral broadening of stochastic light intensity-smoothed by a saturated semiconductor optical amplifier,” IEEE J. Quantum Electron. 34(3), 548–551 (1998).
    [Crossref]
  16. A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Noise suppression of incoherent light using a gain-saturated SOA: implications for spectrum-sliced WDM systems,” J. Lightwave Technol. 23(8), 2399–2409 (2005).
    [Crossref]
  17. H. Kim, S. Kim, S. Hwang, and Y. Oh, “Impact of dispersion, PMD, and PDL on the performance of spectrum-sliced incoherent light sources using gain-saturated semiconductor optical amplifiers,” J. Lightwave Technol. 24(2), 775–785 (2006).
    [Crossref]

2009 (1)

C. H. Kim, K. Lee, and S. B. Lee, “Effects of in-band crosstalk in wavelength-locked Fabry-Perot laser diode-based WDM PONs,” IEEE Photon. Technol. Lett. 21(9), 596–598 (2009).
[Crossref]

2008 (1)

2007 (1)

2006 (3)

2005 (4)

L. Hou, H. Zhu, F. Zhou, L. Wang, J. Bian, and W. Wang, “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input and output,” Semicond. Sci. Technol. 20(9), 912–916 (2005).
[Crossref]

A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Noise suppression of incoherent light using a gain-saturated SOA: implications for spectrum-sliced WDM systems,” J. Lightwave Technol. 23(8), 2399–2409 (2005).
[Crossref]

D. J. Shin, D. K. Jung, H. S. Shin, J. W. Kwon, S. Hwang, Y. Oh, and C. Shim, “Hybrid WDM/TDM-PON with wavelength-selection-free transmitters,” J. Lightwave Technol. 23(1), 187–195 (2005).
[Crossref]

K.-Y. Park, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “A theoretical model of a wavelength-locked Fabry-Perot laser diode to the externally injected narrow-band ASE,” IEEE Photon. Technol. Lett. 17(9), 1797–1799 (2005).
[Crossref]

2003 (2)

F. Heismann, “Origin of clock-frequency components in NRZ-formatted optical signsls,” IEEE Photon. Technol. Lett. 15(7), 912–914 (2003).
[Crossref]

D. J. Shin, D. K. Jung, J. K. Lee, J. H. Lee, Y. H. Choi, Y. C. Band, H. S. Shin, J. Lee, S. T. Hwang, and Y. J. Oh, “155 Mbit/s transmission using ASE-injected Fabry-Perot laser diode in WDM-PON over 70°C temperature range,” Electron. Lett. 39(18), 1331–1332 (2003).
[Crossref]

2000 (1)

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[Crossref]

1999 (1)

Y. S. Jang, C.-H. Lee, and Y. Chung, “Effects of crosstalk in WDM systems using spectrum-sliced light source,” IEEE Photon. Technol. Lett. 11(6), 715–717 (1999).
[Crossref]

1998 (1)

M. J. Munroe, J. Cooper, and M. G. Raymer, “Spectral broadening of stochastic light intensity-smoothed by a saturated semiconductor optical amplifier,” IEEE J. Quantum Electron. 34(3), 548–551 (1998).
[Crossref]

1997 (1)

F. Forghieri, P. Prucnal, R. Tkach, and A. Chraplyvy, “RZ versus NRZ in nonlinear WDM systems,” IEEE Photon. Technol. Lett. 9(7), 1035–1037 (1997).
[Crossref]

1994 (1)

N. M. Froberg, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. Chien, G. T. Harvey, A. Gnauck, and A. M. Johnson, “Generation of 12.5 Gbit/s soliton data stream with an integrated laser-modulator transmitter,” Electron. Lett. 30(22), 1880–1881 (1994).
[Crossref]

Band, Y. C.

D. J. Shin, D. K. Jung, J. K. Lee, J. H. Lee, Y. H. Choi, Y. C. Band, H. S. Shin, J. Lee, S. T. Hwang, and Y. J. Oh, “155 Mbit/s transmission using ASE-injected Fabry-Perot laser diode in WDM-PON over 70°C temperature range,” Electron. Lett. 39(18), 1331–1332 (2003).
[Crossref]

Bian, J.

L. Hou, H. Zhu, F. Zhou, L. Wang, J. Bian, and W. Wang, “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input and output,” Semicond. Sci. Technol. 20(9), 912–916 (2005).
[Crossref]

Chien, M.

N. M. Froberg, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. Chien, G. T. Harvey, A. Gnauck, and A. M. Johnson, “Generation of 12.5 Gbit/s soliton data stream with an integrated laser-modulator transmitter,” Electron. Lett. 30(22), 1880–1881 (1994).
[Crossref]

Choi, K.-M.

K.-Y. Park, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “A theoretical model of a wavelength-locked Fabry-Perot laser diode to the externally injected narrow-band ASE,” IEEE Photon. Technol. Lett. 17(9), 1797–1799 (2005).
[Crossref]

Choi, Y. H.

D. J. Shin, D. K. Jung, J. K. Lee, J. H. Lee, Y. H. Choi, Y. C. Band, H. S. Shin, J. Lee, S. T. Hwang, and Y. J. Oh, “155 Mbit/s transmission using ASE-injected Fabry-Perot laser diode in WDM-PON over 70°C temperature range,” Electron. Lett. 39(18), 1331–1332 (2003).
[Crossref]

Chraplyvy, A.

F. Forghieri, P. Prucnal, R. Tkach, and A. Chraplyvy, “RZ versus NRZ in nonlinear WDM systems,” IEEE Photon. Technol. Lett. 9(7), 1035–1037 (1997).
[Crossref]

Chung, Y.

Y. S. Jang, C.-H. Lee, and Y. Chung, “Effects of crosstalk in WDM systems using spectrum-sliced light source,” IEEE Photon. Technol. Lett. 11(6), 715–717 (1999).
[Crossref]

Cooper, J.

M. J. Munroe, J. Cooper, and M. G. Raymer, “Spectral broadening of stochastic light intensity-smoothed by a saturated semiconductor optical amplifier,” IEEE J. Quantum Electron. 34(3), 548–551 (1998).
[Crossref]

Forghieri, F.

F. Forghieri, P. Prucnal, R. Tkach, and A. Chraplyvy, “RZ versus NRZ in nonlinear WDM systems,” IEEE Photon. Technol. Lett. 9(7), 1035–1037 (1997).
[Crossref]

Froberg, N. M.

N. M. Froberg, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. Chien, G. T. Harvey, A. Gnauck, and A. M. Johnson, “Generation of 12.5 Gbit/s soliton data stream with an integrated laser-modulator transmitter,” Electron. Lett. 30(22), 1880–1881 (1994).
[Crossref]

Gnauck, A.

N. M. Froberg, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. Chien, G. T. Harvey, A. Gnauck, and A. M. Johnson, “Generation of 12.5 Gbit/s soliton data stream with an integrated laser-modulator transmitter,” Electron. Lett. 30(22), 1880–1881 (1994).
[Crossref]

Harvey, G. T.

N. M. Froberg, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. Chien, G. T. Harvey, A. Gnauck, and A. M. Johnson, “Generation of 12.5 Gbit/s soliton data stream with an integrated laser-modulator transmitter,” Electron. Lett. 30(22), 1880–1881 (1994).
[Crossref]

Heismann, F.

F. Heismann, “Origin of clock-frequency components in NRZ-formatted optical signsls,” IEEE Photon. Technol. Lett. 15(7), 912–914 (2003).
[Crossref]

Horak, P.

Hou, L.

L. Hou, H. Zhu, F. Zhou, L. Wang, J. Bian, and W. Wang, “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input and output,” Semicond. Sci. Technol. 20(9), 912–916 (2005).
[Crossref]

Hwang, S.

Hwang, S. T.

D. J. Shin, D. K. Jung, J. K. Lee, J. H. Lee, Y. H. Choi, Y. C. Band, H. S. Shin, J. Lee, S. T. Hwang, and Y. J. Oh, “155 Mbit/s transmission using ASE-injected Fabry-Perot laser diode in WDM-PON over 70°C temperature range,” Electron. Lett. 39(18), 1331–1332 (2003).
[Crossref]

Ibsen, M.

Jang, Y. S.

Y. S. Jang, C.-H. Lee, and Y. Chung, “Effects of crosstalk in WDM systems using spectrum-sliced light source,” IEEE Photon. Technol. Lett. 11(6), 715–717 (1999).
[Crossref]

Ji, H. C.

H. Kim, H. C. Ji, and C. H. Kim, “Effects of intraband crosstalk on incoherent light using SOA-based noise suppression technique,” IEEE Photon. Technol. Lett. 18(14), 1542–1544 (2006).
[Crossref]

Johnson, A. M.

N. M. Froberg, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. Chien, G. T. Harvey, A. Gnauck, and A. M. Johnson, “Generation of 12.5 Gbit/s soliton data stream with an integrated laser-modulator transmitter,” Electron. Lett. 30(22), 1880–1881 (1994).
[Crossref]

Jung, D. K.

D. J. Shin, D. K. Jung, H. S. Shin, J. W. Kwon, S. Hwang, Y. Oh, and C. Shim, “Hybrid WDM/TDM-PON with wavelength-selection-free transmitters,” J. Lightwave Technol. 23(1), 187–195 (2005).
[Crossref]

D. J. Shin, D. K. Jung, J. K. Lee, J. H. Lee, Y. H. Choi, Y. C. Band, H. S. Shin, J. Lee, S. T. Hwang, and Y. J. Oh, “155 Mbit/s transmission using ASE-injected Fabry-Perot laser diode in WDM-PON over 70°C temperature range,” Electron. Lett. 39(18), 1331–1332 (2003).
[Crossref]

Kang, S.-G.

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[Crossref]

Keh, Y. C.

Kim, C. H.

C. H. Kim, K. Lee, and S. B. Lee, “Effects of in-band crosstalk in wavelength-locked Fabry-Perot laser diode-based WDM PONs,” IEEE Photon. Technol. Lett. 21(9), 596–598 (2009).
[Crossref]

H. Kim, H. C. Ji, and C. H. Kim, “Effects of intraband crosstalk on incoherent light using SOA-based noise suppression technique,” IEEE Photon. Technol. Lett. 18(14), 1542–1544 (2006).
[Crossref]

Kim, H.

H. Kim, H. C. Ji, and C. H. Kim, “Effects of intraband crosstalk on incoherent light using SOA-based noise suppression technique,” IEEE Photon. Technol. Lett. 18(14), 1542–1544 (2006).
[Crossref]

H. Kim, S. Kim, S. Hwang, and Y. Oh, “Impact of dispersion, PMD, and PDL on the performance of spectrum-sliced incoherent light sources using gain-saturated semiconductor optical amplifiers,” J. Lightwave Technol. 24(2), 775–785 (2006).
[Crossref]

Kim, H. D.

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[Crossref]

Kim, J.-Y.

Kim, M.-H.

Kim, S.

Koren, U.

N. M. Froberg, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. Chien, G. T. Harvey, A. Gnauck, and A. M. Johnson, “Generation of 12.5 Gbit/s soliton data stream with an integrated laser-modulator transmitter,” Electron. Lett. 30(22), 1880–1881 (1994).
[Crossref]

Kwon, J. W.

Lee, C.-H.

S.-G. Mun, J.-H. Moon, H.-K. Lee, J.-Y. Kim, and C.-H. Lee, “A WDM-PON with a 40 Gb/s (32 x 1.25 Gb/s) capacity based on wavelength-locked Fabry-Perot laser diodes,” Opt. Express 16(15), 11361–11368 (2008).
[Crossref] [PubMed]

S.-M. Lee, S.-G. Mun, M.-H. Kim, and C.-H. Lee, “Demonstration of a long-reach DWDM-PON for consolidation of metro and access networks,” J. Lightwave Technol. 25(1), 271–276 (2007).
[Crossref]

K.-Y. Park, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “A theoretical model of a wavelength-locked Fabry-Perot laser diode to the externally injected narrow-band ASE,” IEEE Photon. Technol. Lett. 17(9), 1797–1799 (2005).
[Crossref]

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[Crossref]

Y. S. Jang, C.-H. Lee, and Y. Chung, “Effects of crosstalk in WDM systems using spectrum-sliced light source,” IEEE Photon. Technol. Lett. 11(6), 715–717 (1999).
[Crossref]

Lee, E. H.

Lee, H.-K.

Lee, J.

D. J. Shin, D. K. Jung, J. K. Lee, J. H. Lee, Y. H. Choi, Y. C. Band, H. S. Shin, J. Lee, S. T. Hwang, and Y. J. Oh, “155 Mbit/s transmission using ASE-injected Fabry-Perot laser diode in WDM-PON over 70°C temperature range,” Electron. Lett. 39(18), 1331–1332 (2003).
[Crossref]

Lee, J. H.

D. J. Shin, D. K. Jung, J. K. Lee, J. H. Lee, Y. H. Choi, Y. C. Band, H. S. Shin, J. Lee, S. T. Hwang, and Y. J. Oh, “155 Mbit/s transmission using ASE-injected Fabry-Perot laser diode in WDM-PON over 70°C temperature range,” Electron. Lett. 39(18), 1331–1332 (2003).
[Crossref]

Lee, J. K.

D. J. Shin, Y. C. Keh, J. W. Kwon, E. H. Lee, J. K. Lee, and M. K. Park, “J. W. Park, Y. K. Oh, S. W. Kim, I. K. Yun, H. C. Shin, D. Heo, J. S. Lee, H. S. Shin, H. S. Kim, S. B. Park, D. K. Jung, S. Hwang, Y. J. Oh, D. H. Jang, and C. S. Shim, “Low-cost WDM-PON with colorless bidirectional transceivers,” J. Lightwave Technol. 24(1), 158–165 (2006).

D. J. Shin, D. K. Jung, J. K. Lee, J. H. Lee, Y. H. Choi, Y. C. Band, H. S. Shin, J. Lee, S. T. Hwang, and Y. J. Oh, “155 Mbit/s transmission using ASE-injected Fabry-Perot laser diode in WDM-PON over 70°C temperature range,” Electron. Lett. 39(18), 1331–1332 (2003).
[Crossref]

Lee, K.

C. H. Kim, K. Lee, and S. B. Lee, “Effects of in-band crosstalk in wavelength-locked Fabry-Perot laser diode-based WDM PONs,” IEEE Photon. Technol. Lett. 21(9), 596–598 (2009).
[Crossref]

Lee, S. B.

C. H. Kim, K. Lee, and S. B. Lee, “Effects of in-band crosstalk in wavelength-locked Fabry-Perot laser diode-based WDM PONs,” IEEE Photon. Technol. Lett. 21(9), 596–598 (2009).
[Crossref]

Lee, S.-M.

McCoy, A. D.

Miller, B. I.

N. M. Froberg, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. Chien, G. T. Harvey, A. Gnauck, and A. M. Johnson, “Generation of 12.5 Gbit/s soliton data stream with an integrated laser-modulator transmitter,” Electron. Lett. 30(22), 1880–1881 (1994).
[Crossref]

Moon, J.-H.

Mun, S.-G.

Munroe, M. J.

M. J. Munroe, J. Cooper, and M. G. Raymer, “Spectral broadening of stochastic light intensity-smoothed by a saturated semiconductor optical amplifier,” IEEE J. Quantum Electron. 34(3), 548–551 (1998).
[Crossref]

Oh, Y.

Oh, Y. J.

D. J. Shin, D. K. Jung, J. K. Lee, J. H. Lee, Y. H. Choi, Y. C. Band, H. S. Shin, J. Lee, S. T. Hwang, and Y. J. Oh, “155 Mbit/s transmission using ASE-injected Fabry-Perot laser diode in WDM-PON over 70°C temperature range,” Electron. Lett. 39(18), 1331–1332 (2003).
[Crossref]

Park, K.-Y.

K.-Y. Park, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “A theoretical model of a wavelength-locked Fabry-Perot laser diode to the externally injected narrow-band ASE,” IEEE Photon. Technol. Lett. 17(9), 1797–1799 (2005).
[Crossref]

Park, M. K.

Prucnal, P.

F. Forghieri, P. Prucnal, R. Tkach, and A. Chraplyvy, “RZ versus NRZ in nonlinear WDM systems,” IEEE Photon. Technol. Lett. 9(7), 1035–1037 (1997).
[Crossref]

Raybon, G.

N. M. Froberg, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. Chien, G. T. Harvey, A. Gnauck, and A. M. Johnson, “Generation of 12.5 Gbit/s soliton data stream with an integrated laser-modulator transmitter,” Electron. Lett. 30(22), 1880–1881 (1994).
[Crossref]

Raymer, M. G.

M. J. Munroe, J. Cooper, and M. G. Raymer, “Spectral broadening of stochastic light intensity-smoothed by a saturated semiconductor optical amplifier,” IEEE J. Quantum Electron. 34(3), 548–551 (1998).
[Crossref]

Richardson, D. J.

Shim, C.

Shin, D. J.

Shin, H. S.

D. J. Shin, D. K. Jung, H. S. Shin, J. W. Kwon, S. Hwang, Y. Oh, and C. Shim, “Hybrid WDM/TDM-PON with wavelength-selection-free transmitters,” J. Lightwave Technol. 23(1), 187–195 (2005).
[Crossref]

D. J. Shin, D. K. Jung, J. K. Lee, J. H. Lee, Y. H. Choi, Y. C. Band, H. S. Shin, J. Lee, S. T. Hwang, and Y. J. Oh, “155 Mbit/s transmission using ASE-injected Fabry-Perot laser diode in WDM-PON over 70°C temperature range,” Electron. Lett. 39(18), 1331–1332 (2003).
[Crossref]

Thomsen, B. C.

Tkach, R.

F. Forghieri, P. Prucnal, R. Tkach, and A. Chraplyvy, “RZ versus NRZ in nonlinear WDM systems,” IEEE Photon. Technol. Lett. 9(7), 1035–1037 (1997).
[Crossref]

Wang, L.

L. Hou, H. Zhu, F. Zhou, L. Wang, J. Bian, and W. Wang, “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input and output,” Semicond. Sci. Technol. 20(9), 912–916 (2005).
[Crossref]

Wang, W.

L. Hou, H. Zhu, F. Zhou, L. Wang, J. Bian, and W. Wang, “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input and output,” Semicond. Sci. Technol. 20(9), 912–916 (2005).
[Crossref]

Young, M. G.

N. M. Froberg, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. Chien, G. T. Harvey, A. Gnauck, and A. M. Johnson, “Generation of 12.5 Gbit/s soliton data stream with an integrated laser-modulator transmitter,” Electron. Lett. 30(22), 1880–1881 (1994).
[Crossref]

Zhou, F.

L. Hou, H. Zhu, F. Zhou, L. Wang, J. Bian, and W. Wang, “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input and output,” Semicond. Sci. Technol. 20(9), 912–916 (2005).
[Crossref]

Zhu, H.

L. Hou, H. Zhu, F. Zhou, L. Wang, J. Bian, and W. Wang, “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input and output,” Semicond. Sci. Technol. 20(9), 912–916 (2005).
[Crossref]

Electron. Lett. (2)

N. M. Froberg, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. Chien, G. T. Harvey, A. Gnauck, and A. M. Johnson, “Generation of 12.5 Gbit/s soliton data stream with an integrated laser-modulator transmitter,” Electron. Lett. 30(22), 1880–1881 (1994).
[Crossref]

D. J. Shin, D. K. Jung, J. K. Lee, J. H. Lee, Y. H. Choi, Y. C. Band, H. S. Shin, J. Lee, S. T. Hwang, and Y. J. Oh, “155 Mbit/s transmission using ASE-injected Fabry-Perot laser diode in WDM-PON over 70°C temperature range,” Electron. Lett. 39(18), 1331–1332 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

M. J. Munroe, J. Cooper, and M. G. Raymer, “Spectral broadening of stochastic light intensity-smoothed by a saturated semiconductor optical amplifier,” IEEE J. Quantum Electron. 34(3), 548–551 (1998).
[Crossref]

IEEE Photon. Technol. Lett. (7)

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[Crossref]

K.-Y. Park, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “A theoretical model of a wavelength-locked Fabry-Perot laser diode to the externally injected narrow-band ASE,” IEEE Photon. Technol. Lett. 17(9), 1797–1799 (2005).
[Crossref]

C. H. Kim, K. Lee, and S. B. Lee, “Effects of in-band crosstalk in wavelength-locked Fabry-Perot laser diode-based WDM PONs,” IEEE Photon. Technol. Lett. 21(9), 596–598 (2009).
[Crossref]

Y. S. Jang, C.-H. Lee, and Y. Chung, “Effects of crosstalk in WDM systems using spectrum-sliced light source,” IEEE Photon. Technol. Lett. 11(6), 715–717 (1999).
[Crossref]

H. Kim, H. C. Ji, and C. H. Kim, “Effects of intraband crosstalk on incoherent light using SOA-based noise suppression technique,” IEEE Photon. Technol. Lett. 18(14), 1542–1544 (2006).
[Crossref]

F. Forghieri, P. Prucnal, R. Tkach, and A. Chraplyvy, “RZ versus NRZ in nonlinear WDM systems,” IEEE Photon. Technol. Lett. 9(7), 1035–1037 (1997).
[Crossref]

F. Heismann, “Origin of clock-frequency components in NRZ-formatted optical signsls,” IEEE Photon. Technol. Lett. 15(7), 912–914 (2003).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (1)

Semicond. Sci. Technol. (1)

L. Hou, H. Zhu, F. Zhou, L. Wang, J. Bian, and W. Wang, “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input and output,” Semicond. Sci. Technol. 20(9), 912–916 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Pulsed-incoherent-light-injected FP-LDs for WDM-PON systems.
Fig. 2
Fig. 2 Experimental setup. BPF: band-pass filter, EAM: electro-absorption modulator, EDFA: Erbium-doped fiber amplifier. (a) The optical spectrum of the spectrum-sliced ASE measured at the port 1 of the circulator. (b) The eye diagram of the pulsed ASE measured at the port 2 of the circulator. Due to excess intensity noise of the incoherent light, we averaged 1024 waveforms for display. (c) The eye diagram of the RZ signals measured at the receiver.
Fig. 3
Fig. 3 Optical spectra of the FP-LD output when (a) CW ASE is injected at the peak of an FP-LD mode (A-shaped), (b) CW ASE is injected between FP-LD modes (M-shaped), (c) pulsed ASE is injected at the peak of an FP-LD mode (A-shaped), and (d) pulsed ASE is injected between FP-LD modes (M-shaped). The average optical power of the injected ASE was −13 dBm. The insets show the eye diagrams.
Fig. 4
Fig. 4 Measured SMSR versus average power of the injected ASE.
Fig. 5
Fig. 5 Measured spectral linewidth of the FP-LD output as a function of ASE power. (a) 3-dB bandwidth of A-shaped FP-LD output, (b) 10-dB bandwidth of M-shaped FP-LD output. The same results are reproduced in (c) and (d) as a function of the peak power of the injected ASE.
Fig. 6
Fig. 6 Measured back-to-back receiver sensitivity for the proposed transmitter. (a) The ASE is injected at the peak of an FP-LD mode and A-shaped spectrum is generated. (b) The ASE is injected between FP-LD modes and M-shaped spectrum is generated.
Fig. 7
Fig. 7 Measured dispersion tolerance. The average power of the injected ASE was −7 dBm. The insets show the eye diagrams at the receivers for the M-shaped NRZ and RZ signals.

Metrics