Abstract

A method to suppress polarization-fluctuation induced drift in resonator fiber optic gyro (R-FOG) is demonstrated by a polarization-maintaining fiber (PMF) resonator with twin 90° polarization-axis rotated splices. By setting the length difference of the fiber segments between two 90° polarization-axis rotated splicing points to a half of the beat-length of the fiber, a single eigen-state of polarization (ESOP) is excited with incident lightwave linearly polarized along the polarization-axis of the fiber. Compared to the previously reported resonator employing single 90° polarization-axis rotated splice [1], in which two ESOPs are excited, our new scheme avoids the effect from the unwanted ESOP and thus suppresses the polarization-fluctuation induced drift in R-FOG output significantly.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Sanders, R. B. Smith, and G. F. Rouse, “Novel polarization-rotating fiber resonator for rotation sensing applications,” Proc. SPIE 1169, 373–381 (1989).
  2. K. Hotate, “Fiber-Optic Gyros,” in Optical Fiber Sensors, Applications, Analysis, and Future Trends, J. Dakin and B. Culshaw, eds. (Artech House, MA, 1997), pp. 167–206.
  3. K. Takiguchi and K. Hotate, “Partially digital-feedback scheme and evaluation of optical Kerr-effect induced bias in optical passive ring-resonator gyro,” IEEE Photon. Technol. Lett. 3(7), 679–681 (1991).
    [CrossRef]
  4. D. M. Shupe, “Thermally induced nonreciprocity in the fiber-optic interferometer,” Appl. Opt. 19(5), 654–655 (1980).
    [CrossRef] [PubMed]
  5. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Eigenstate of polarization in a fiber ring resonator and its effect in an optical passive ring-resonator gyro,” Appl. Opt. 25(15), 2606–2612 (1986).
    [CrossRef] [PubMed]
  6. K. Takiguchi and K. Hotate, “Bias of an optical passive ring-resonator gyro caused by the misalignment of the polarization axis in the polarization-maintaining fiber resonator,” J. Lightwave Technol. 10(4), 514–522 (1992).
    [CrossRef]
  7. H. K. Kim, V. Dangui, M. Digonnet, and G. Kino, “Fiber-optic gyroscope using an air-core photonic-bandgap fiber,” Proc. SPIE 5855, 198–201 (2005).
    [CrossRef]
  8. G. A. Sanders, L. K. Strandjord, and T. Qiu, “Hollow core fiber optic ring resonator for rotation sensing,” in Proc. 18th International Conference on Optical Fiber Sensors (OFS 18), paper ME6 (2006).
  9. S. Blin, H. K. Kim, M. Digonnet, and G. Kino, “Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber,” J. Lightwave Technol. 25(3), 861–865 (2007).
    [CrossRef]
  10. L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization-rotating resonator,” Proc. SPIE 1585, 163–172 (1991).
    [CrossRef]
  11. K. Hotate and H. Nissaka, “Analysis of a method to reduce polarization fluctuation-induced bias drift in resonator fiber-optic gyros,” IEICE Technical Report of Microwave 101, 13–18 (2001) (in Japanese).
  12. X. Wang, Z. He, and K. Hotate, “Polarization-noise suppression by twice 90° polarization-axis rotated splicing in resonator fiber optic gyroscope,” in Proc. Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference (CLEO/IQEC), paper CMG1 (2009).
  13. K. Hotate and M. Harumoto, “Resonator fiber optic gyro using digital serrodyne modulation,” J. Lightwave Technol. 15(3), 466–473 (1997).
    [CrossRef]
  14. K. Hotate and G. Hayashi, “Resonator fiber optic gyro using digital serrodyne modulation -method to reduce the noise induced by the backscattering and closed-loop operation using digital signal processing,” in Proc. 13th International Conference on Optical Fiber Sensors (OFS 13), 104–107 (1999).
  15. X. Wang, Z. He, and K. Hotate, “Experiment on bias stability measurement of resonator fiber optic gyro with digital feedback scheme,” in Proc. 20th International Conference on Optical Fiber Sensors (OFS 20), paper 7503–144 (2009).
  16. F. Mohr, “Thermooptically induced bias drift in fiber optical Sagnac interferometers,” J. Lightwave Technol. 14(1), 27–41 (1996).
    [CrossRef]
  17. K. Hotate and Y. Kikuchi, “Analysis of thermooptically induced bias drift in resonator fiber optic gyro,” Proc. SPIE 4204, 81–88 (2000).
    [CrossRef]

2007

2005

H. K. Kim, V. Dangui, M. Digonnet, and G. Kino, “Fiber-optic gyroscope using an air-core photonic-bandgap fiber,” Proc. SPIE 5855, 198–201 (2005).
[CrossRef]

2001

K. Hotate and H. Nissaka, “Analysis of a method to reduce polarization fluctuation-induced bias drift in resonator fiber-optic gyros,” IEICE Technical Report of Microwave 101, 13–18 (2001) (in Japanese).

2000

K. Hotate and Y. Kikuchi, “Analysis of thermooptically induced bias drift in resonator fiber optic gyro,” Proc. SPIE 4204, 81–88 (2000).
[CrossRef]

1997

K. Hotate and M. Harumoto, “Resonator fiber optic gyro using digital serrodyne modulation,” J. Lightwave Technol. 15(3), 466–473 (1997).
[CrossRef]

1996

F. Mohr, “Thermooptically induced bias drift in fiber optical Sagnac interferometers,” J. Lightwave Technol. 14(1), 27–41 (1996).
[CrossRef]

1992

K. Takiguchi and K. Hotate, “Bias of an optical passive ring-resonator gyro caused by the misalignment of the polarization axis in the polarization-maintaining fiber resonator,” J. Lightwave Technol. 10(4), 514–522 (1992).
[CrossRef]

1991

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization-rotating resonator,” Proc. SPIE 1585, 163–172 (1991).
[CrossRef]

K. Takiguchi and K. Hotate, “Partially digital-feedback scheme and evaluation of optical Kerr-effect induced bias in optical passive ring-resonator gyro,” IEEE Photon. Technol. Lett. 3(7), 679–681 (1991).
[CrossRef]

1989

G. A. Sanders, R. B. Smith, and G. F. Rouse, “Novel polarization-rotating fiber resonator for rotation sensing applications,” Proc. SPIE 1169, 373–381 (1989).

1986

1980

Blin, S.

Dangui, V.

H. K. Kim, V. Dangui, M. Digonnet, and G. Kino, “Fiber-optic gyroscope using an air-core photonic-bandgap fiber,” Proc. SPIE 5855, 198–201 (2005).
[CrossRef]

Digonnet, M.

S. Blin, H. K. Kim, M. Digonnet, and G. Kino, “Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber,” J. Lightwave Technol. 25(3), 861–865 (2007).
[CrossRef]

H. K. Kim, V. Dangui, M. Digonnet, and G. Kino, “Fiber-optic gyroscope using an air-core photonic-bandgap fiber,” Proc. SPIE 5855, 198–201 (2005).
[CrossRef]

Harumoto, M.

K. Hotate and M. Harumoto, “Resonator fiber optic gyro using digital serrodyne modulation,” J. Lightwave Technol. 15(3), 466–473 (1997).
[CrossRef]

Higashiguchi, M.

Hotate, K.

K. Hotate and H. Nissaka, “Analysis of a method to reduce polarization fluctuation-induced bias drift in resonator fiber-optic gyros,” IEICE Technical Report of Microwave 101, 13–18 (2001) (in Japanese).

K. Hotate and Y. Kikuchi, “Analysis of thermooptically induced bias drift in resonator fiber optic gyro,” Proc. SPIE 4204, 81–88 (2000).
[CrossRef]

K. Hotate and M. Harumoto, “Resonator fiber optic gyro using digital serrodyne modulation,” J. Lightwave Technol. 15(3), 466–473 (1997).
[CrossRef]

K. Takiguchi and K. Hotate, “Bias of an optical passive ring-resonator gyro caused by the misalignment of the polarization axis in the polarization-maintaining fiber resonator,” J. Lightwave Technol. 10(4), 514–522 (1992).
[CrossRef]

K. Takiguchi and K. Hotate, “Partially digital-feedback scheme and evaluation of optical Kerr-effect induced bias in optical passive ring-resonator gyro,” IEEE Photon. Technol. Lett. 3(7), 679–681 (1991).
[CrossRef]

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Eigenstate of polarization in a fiber ring resonator and its effect in an optical passive ring-resonator gyro,” Appl. Opt. 25(15), 2606–2612 (1986).
[CrossRef] [PubMed]

Iwatsuki, K.

Kikuchi, Y.

K. Hotate and Y. Kikuchi, “Analysis of thermooptically induced bias drift in resonator fiber optic gyro,” Proc. SPIE 4204, 81–88 (2000).
[CrossRef]

Kim, H. K.

S. Blin, H. K. Kim, M. Digonnet, and G. Kino, “Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber,” J. Lightwave Technol. 25(3), 861–865 (2007).
[CrossRef]

H. K. Kim, V. Dangui, M. Digonnet, and G. Kino, “Fiber-optic gyroscope using an air-core photonic-bandgap fiber,” Proc. SPIE 5855, 198–201 (2005).
[CrossRef]

Kino, G.

S. Blin, H. K. Kim, M. Digonnet, and G. Kino, “Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber,” J. Lightwave Technol. 25(3), 861–865 (2007).
[CrossRef]

H. K. Kim, V. Dangui, M. Digonnet, and G. Kino, “Fiber-optic gyroscope using an air-core photonic-bandgap fiber,” Proc. SPIE 5855, 198–201 (2005).
[CrossRef]

Mohr, F.

F. Mohr, “Thermooptically induced bias drift in fiber optical Sagnac interferometers,” J. Lightwave Technol. 14(1), 27–41 (1996).
[CrossRef]

Nissaka, H.

K. Hotate and H. Nissaka, “Analysis of a method to reduce polarization fluctuation-induced bias drift in resonator fiber-optic gyros,” IEICE Technical Report of Microwave 101, 13–18 (2001) (in Japanese).

Rouse, G. F.

G. A. Sanders, R. B. Smith, and G. F. Rouse, “Novel polarization-rotating fiber resonator for rotation sensing applications,” Proc. SPIE 1169, 373–381 (1989).

Sanders, G. A.

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization-rotating resonator,” Proc. SPIE 1585, 163–172 (1991).
[CrossRef]

G. A. Sanders, R. B. Smith, and G. F. Rouse, “Novel polarization-rotating fiber resonator for rotation sensing applications,” Proc. SPIE 1169, 373–381 (1989).

Shupe, D. M.

Smith, R. B.

G. A. Sanders, R. B. Smith, and G. F. Rouse, “Novel polarization-rotating fiber resonator for rotation sensing applications,” Proc. SPIE 1169, 373–381 (1989).

Strandjord, L. K.

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization-rotating resonator,” Proc. SPIE 1585, 163–172 (1991).
[CrossRef]

Takiguchi, K.

K. Takiguchi and K. Hotate, “Bias of an optical passive ring-resonator gyro caused by the misalignment of the polarization axis in the polarization-maintaining fiber resonator,” J. Lightwave Technol. 10(4), 514–522 (1992).
[CrossRef]

K. Takiguchi and K. Hotate, “Partially digital-feedback scheme and evaluation of optical Kerr-effect induced bias in optical passive ring-resonator gyro,” IEEE Photon. Technol. Lett. 3(7), 679–681 (1991).
[CrossRef]

Appl. Opt.

IEEE Photon. Technol. Lett.

K. Takiguchi and K. Hotate, “Partially digital-feedback scheme and evaluation of optical Kerr-effect induced bias in optical passive ring-resonator gyro,” IEEE Photon. Technol. Lett. 3(7), 679–681 (1991).
[CrossRef]

IEICE Technical Report of Microwave

K. Hotate and H. Nissaka, “Analysis of a method to reduce polarization fluctuation-induced bias drift in resonator fiber-optic gyros,” IEICE Technical Report of Microwave 101, 13–18 (2001) (in Japanese).

J. Lightwave Technol.

K. Takiguchi and K. Hotate, “Bias of an optical passive ring-resonator gyro caused by the misalignment of the polarization axis in the polarization-maintaining fiber resonator,” J. Lightwave Technol. 10(4), 514–522 (1992).
[CrossRef]

S. Blin, H. K. Kim, M. Digonnet, and G. Kino, “Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber,” J. Lightwave Technol. 25(3), 861–865 (2007).
[CrossRef]

K. Hotate and M. Harumoto, “Resonator fiber optic gyro using digital serrodyne modulation,” J. Lightwave Technol. 15(3), 466–473 (1997).
[CrossRef]

F. Mohr, “Thermooptically induced bias drift in fiber optical Sagnac interferometers,” J. Lightwave Technol. 14(1), 27–41 (1996).
[CrossRef]

Proc. SPIE

K. Hotate and Y. Kikuchi, “Analysis of thermooptically induced bias drift in resonator fiber optic gyro,” Proc. SPIE 4204, 81–88 (2000).
[CrossRef]

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization-rotating resonator,” Proc. SPIE 1585, 163–172 (1991).
[CrossRef]

H. K. Kim, V. Dangui, M. Digonnet, and G. Kino, “Fiber-optic gyroscope using an air-core photonic-bandgap fiber,” Proc. SPIE 5855, 198–201 (2005).
[CrossRef]

G. A. Sanders, R. B. Smith, and G. F. Rouse, “Novel polarization-rotating fiber resonator for rotation sensing applications,” Proc. SPIE 1169, 373–381 (1989).

Other

K. Hotate, “Fiber-Optic Gyros,” in Optical Fiber Sensors, Applications, Analysis, and Future Trends, J. Dakin and B. Culshaw, eds. (Artech House, MA, 1997), pp. 167–206.

X. Wang, Z. He, and K. Hotate, “Polarization-noise suppression by twice 90° polarization-axis rotated splicing in resonator fiber optic gyroscope,” in Proc. Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference (CLEO/IQEC), paper CMG1 (2009).

G. A. Sanders, L. K. Strandjord, and T. Qiu, “Hollow core fiber optic ring resonator for rotation sensing,” in Proc. 18th International Conference on Optical Fiber Sensors (OFS 18), paper ME6 (2006).

K. Hotate and G. Hayashi, “Resonator fiber optic gyro using digital serrodyne modulation -method to reduce the noise induced by the backscattering and closed-loop operation using digital signal processing,” in Proc. 13th International Conference on Optical Fiber Sensors (OFS 13), 104–107 (1999).

X. Wang, Z. He, and K. Hotate, “Experiment on bias stability measurement of resonator fiber optic gyro with digital feedback scheme,” in Proc. 20th International Conference on Optical Fiber Sensors (OFS 20), paper 7503–144 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Mathematical model of R-FOG with a resonator adopting twin 90° polarization-axis rotated splices. E j,i: input electric field, E j,o: output electric field (j = cw, ccw); C1,2: coupler; P1,2: polarizer; L 1,2,3,4: fiber length; θ1,2: rotated angle in splicing; PD1,2: photodetector; Ω: rotation rate.

Fig. 2
Fig. 2

Calculated shapes of ESOP as a function of ESOP-to-ESOP phase-separation after one-turn transmission through the resonator. (a) to (i) correspond to the case of 0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4, 2π, respectively. Solid black lines represent the ESOPs when θ1 = θ2 = 90° and without coupler crosstalk, and blue and red (colored online) dotted lines stand for the ESOPs when θ1 = 91°, θ2 = 80° and coupler crosstalk of 20 dB.

Fig. 3
Fig. 3

Conceptual drawing of the setup for basic experiments to measure the polarization-fluctuation induced drift in the R-FOG with twin 90° polarization-axis rotated splices. Digital feedback schemes are incorporated to control the laser central frequency and the amplitude of the phase modulation waveform. Counter-measure for the Rayleigh backscattering noise is also adopted. FL: fiber laser; ISO: isolator; C: coupler; PM: phase modulator; POL: polarizer; PD: photo diode; LIA: lock-in amplifier; Atten: attenuator; FG: function generator.

Fig. 4
Fig. 4

Resonant characteristics obtained in the clockwise output by scanning the central frequency of the input lightwave, (a) under the ideal condition that the ESOP-to-ESOP phase-separation is equal to π, and the input lightwave is linearly polarized along one of the polarization axis of the PMF; (b) under the condition that the ESOP-to-ESOP phase-separation is equal to π/2; (c) under the condition that the ESOP-to-ESOP phase-separation is equal to π/5; and (d) under the same ESOP-to-ESOP phase-separation condition of (a), but the input lightwave is linearly polarized along with 45° tilted from the polarization axis of the PMF.

Fig. 5
Fig. 5

Comparison of the R-FOG bias drift between different excitation conditions of ESOPs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ φ = Δ β [( L 1 + L 4 )-( L 2 + L 3 )]= π ,
Δ l = B / 2 ,

Metrics