Abstract

In this paper, we demonstrate a simple, fast and single-step method for fabricating self-enclosed fluidic channels via TPA. Pairs of parallel, polymerized ribs are linked by the subsequent polymerization with correctly predetermined offset between the ribs. The region, where the radicals are initiated but its concentration is below the threshold, we called it a sub-activated region. The subsequent polymerization is triggered by the overlap of the sub-activated regions of the two adjacent ribs. The dimensions of the self-enclosed channels depends on the offset between ribs, the scan speed as well as the laser parameters such as pulse energy, pulsewidth and repetition rate.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Haber, “Microfluidics in commercial applications; an industry perspective,” Lab Chip 6(9), 1118–1121 (2006).
    [CrossRef] [PubMed]
  2. T. Fujii, “PDMS-based microfluidic devices for biomedical applications,” Microelectron. Eng. 61–62(1-3), 907–914 (2002).
    [CrossRef]
  3. P. Mao and J. Han, “Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding,” Lab Chip 5(8), 837–844 (2005).
    [CrossRef] [PubMed]
  4. W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14(6), 578–583 (2003).
    [CrossRef]
  5. Q. Xia, K. J. Morton, R. H. Austin, and S. Y. Chou, “Sub-10 nm self-enclosed self-limited nanofluidic channel arrays,” Nano Lett. 8(11), 3830–3833 (2008).
    [CrossRef] [PubMed]
  6. U. Bilitewski, M. Genrich, S. Kadow, and G. Mersal, “Biochemical analysis with microfluidic systems,” Anal. Bioanal. Chem. 377(3), 556–569 (2003).
    [CrossRef] [PubMed]
  7. H. A. Reed, C. E. White, V. Rao, S. A. B. Allen, C. L. Henderson, and P. A. Kohl, “Fabrication of microchannels using polycarbonates as sacrificial materials,” J. Micromech. Microeng. 11(6), 733–737 (2001).
    [CrossRef]
  8. K. Venkatakrishnan, S. Jariwala, and B. Tan, “Maskless fabrication of nano-fluidic channels by two-photon absorption (TPA) polymerization of SU-8 on glass substrate,” Opt. Express 17(4), 2756–2762 (2009).
    [CrossRef] [PubMed]
  9. L. Shah, A. Y. Arai, S. M. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13(6), 1999–2006 (2005).
    [CrossRef] [PubMed]
  10. G. Witzgall, R. Vrijen, E. Yablonovitch, V. Doan, and B. J. Schwartz, “Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures,” Opt. Lett. 23(22), 1745–1747 (1998).
    [CrossRef]
  11. S. Jariwala, K. Venkatakrishnan, and B. Tan, “Micro-fluidic channel fabrication via two-photon absorption (TPA) polymerization assisted ablation,” J. Micromech. Microeng. 19(11), 115023–115029 (2009).
    [CrossRef]
  12. H. Sun, K. Takada, M. Kim, K. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
    [CrossRef]
  13. N. Uppal and P. S. Shiakolas, “Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics,” J. Micro-Nanolithogr. Mems and Moems 7(4), 043002 (2008).
    [CrossRef]
  14. T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800 nm pulses,” Appl. Phys. A Mater. Sci. Process. 80(8), 1717–1724 (2005).
    [CrossRef]
  15. C. Lee, T. Chang, K. Lee, J. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys., A Mater. Sci. Process. 79(8), 2027–2031 (2004).

2009 (2)

K. Venkatakrishnan, S. Jariwala, and B. Tan, “Maskless fabrication of nano-fluidic channels by two-photon absorption (TPA) polymerization of SU-8 on glass substrate,” Opt. Express 17(4), 2756–2762 (2009).
[CrossRef] [PubMed]

S. Jariwala, K. Venkatakrishnan, and B. Tan, “Micro-fluidic channel fabrication via two-photon absorption (TPA) polymerization assisted ablation,” J. Micromech. Microeng. 19(11), 115023–115029 (2009).
[CrossRef]

2008 (2)

N. Uppal and P. S. Shiakolas, “Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics,” J. Micro-Nanolithogr. Mems and Moems 7(4), 043002 (2008).
[CrossRef]

Q. Xia, K. J. Morton, R. H. Austin, and S. Y. Chou, “Sub-10 nm self-enclosed self-limited nanofluidic channel arrays,” Nano Lett. 8(11), 3830–3833 (2008).
[CrossRef] [PubMed]

2006 (1)

C. Haber, “Microfluidics in commercial applications; an industry perspective,” Lab Chip 6(9), 1118–1121 (2006).
[CrossRef] [PubMed]

2005 (3)

P. Mao and J. Han, “Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding,” Lab Chip 5(8), 837–844 (2005).
[CrossRef] [PubMed]

L. Shah, A. Y. Arai, S. M. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13(6), 1999–2006 (2005).
[CrossRef] [PubMed]

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800 nm pulses,” Appl. Phys. A Mater. Sci. Process. 80(8), 1717–1724 (2005).
[CrossRef]

2004 (1)

C. Lee, T. Chang, K. Lee, J. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys., A Mater. Sci. Process. 79(8), 2027–2031 (2004).

2003 (3)

H. Sun, K. Takada, M. Kim, K. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

U. Bilitewski, M. Genrich, S. Kadow, and G. Mersal, “Biochemical analysis with microfluidic systems,” Anal. Bioanal. Chem. 377(3), 556–569 (2003).
[CrossRef] [PubMed]

W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14(6), 578–583 (2003).
[CrossRef]

2002 (1)

T. Fujii, “PDMS-based microfluidic devices for biomedical applications,” Microelectron. Eng. 61–62(1-3), 907–914 (2002).
[CrossRef]

2001 (1)

H. A. Reed, C. E. White, V. Rao, S. A. B. Allen, C. L. Henderson, and P. A. Kohl, “Fabrication of microchannels using polycarbonates as sacrificial materials,” J. Micromech. Microeng. 11(6), 733–737 (2001).
[CrossRef]

1998 (1)

Allen, S. A. B.

H. A. Reed, C. E. White, V. Rao, S. A. B. Allen, C. L. Henderson, and P. A. Kohl, “Fabrication of microchannels using polycarbonates as sacrificial materials,” J. Micromech. Microeng. 11(6), 733–737 (2001).
[CrossRef]

Arai, A. Y.

Austin, R. H.

Q. Xia, K. J. Morton, R. H. Austin, and S. Y. Chou, “Sub-10 nm self-enclosed self-limited nanofluidic channel arrays,” Nano Lett. 8(11), 3830–3833 (2008).
[CrossRef] [PubMed]

W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14(6), 578–583 (2003).
[CrossRef]

Bilitewski, U.

U. Bilitewski, M. Genrich, S. Kadow, and G. Mersal, “Biochemical analysis with microfluidic systems,” Anal. Bioanal. Chem. 377(3), 556–569 (2003).
[CrossRef] [PubMed]

Borowiec, A.

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800 nm pulses,” Appl. Phys. A Mater. Sci. Process. 80(8), 1717–1724 (2005).
[CrossRef]

Chang, T.

C. Lee, T. Chang, K. Lee, J. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys., A Mater. Sci. Process. 79(8), 2027–2031 (2004).

Chen, L.

W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14(6), 578–583 (2003).
[CrossRef]

Chou, S. Y.

Q. Xia, K. J. Morton, R. H. Austin, and S. Y. Chou, “Sub-10 nm self-enclosed self-limited nanofluidic channel arrays,” Nano Lett. 8(11), 3830–3833 (2008).
[CrossRef] [PubMed]

W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14(6), 578–583 (2003).
[CrossRef]

Crawford, T. H. R.

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800 nm pulses,” Appl. Phys. A Mater. Sci. Process. 80(8), 1717–1724 (2005).
[CrossRef]

Doan, V.

Eaton, S. M.

Fujii, T.

T. Fujii, “PDMS-based microfluidic devices for biomedical applications,” Microelectron. Eng. 61–62(1-3), 907–914 (2002).
[CrossRef]

Genrich, M.

U. Bilitewski, M. Genrich, S. Kadow, and G. Mersal, “Biochemical analysis with microfluidic systems,” Anal. Bioanal. Chem. 377(3), 556–569 (2003).
[CrossRef] [PubMed]

Haber, C.

C. Haber, “Microfluidics in commercial applications; an industry perspective,” Lab Chip 6(9), 1118–1121 (2006).
[CrossRef] [PubMed]

Han, J.

P. Mao and J. Han, “Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding,” Lab Chip 5(8), 837–844 (2005).
[CrossRef] [PubMed]

Haugen, H. K.

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800 nm pulses,” Appl. Phys. A Mater. Sci. Process. 80(8), 1717–1724 (2005).
[CrossRef]

Henderson, C. L.

H. A. Reed, C. E. White, V. Rao, S. A. B. Allen, C. L. Henderson, and P. A. Kohl, “Fabrication of microchannels using polycarbonates as sacrificial materials,” J. Micromech. Microeng. 11(6), 733–737 (2001).
[CrossRef]

Herman, P. R.

Jariwala, S.

K. Venkatakrishnan, S. Jariwala, and B. Tan, “Maskless fabrication of nano-fluidic channels by two-photon absorption (TPA) polymerization of SU-8 on glass substrate,” Opt. Express 17(4), 2756–2762 (2009).
[CrossRef] [PubMed]

S. Jariwala, K. Venkatakrishnan, and B. Tan, “Micro-fluidic channel fabrication via two-photon absorption (TPA) polymerization assisted ablation,” J. Micromech. Microeng. 19(11), 115023–115029 (2009).
[CrossRef]

Kadow, S.

U. Bilitewski, M. Genrich, S. Kadow, and G. Mersal, “Biochemical analysis with microfluidic systems,” Anal. Bioanal. Chem. 377(3), 556–569 (2003).
[CrossRef] [PubMed]

Kawata, S.

H. Sun, K. Takada, M. Kim, K. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

Kim, M.

H. Sun, K. Takada, M. Kim, K. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

Kohl, P. A.

W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14(6), 578–583 (2003).
[CrossRef]

H. A. Reed, C. E. White, V. Rao, S. A. B. Allen, C. L. Henderson, and P. A. Kohl, “Fabrication of microchannels using polycarbonates as sacrificial materials,” J. Micromech. Microeng. 11(6), 733–737 (2001).
[CrossRef]

Krotine, J.

W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14(6), 578–583 (2003).
[CrossRef]

Lee, C.

C. Lee, T. Chang, K. Lee, J. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys., A Mater. Sci. Process. 79(8), 2027–2031 (2004).

Lee, K.

C. Lee, T. Chang, K. Lee, J. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys., A Mater. Sci. Process. 79(8), 2027–2031 (2004).

H. Sun, K. Takada, M. Kim, K. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

Li, W.

W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14(6), 578–583 (2003).
[CrossRef]

Lin, J.

C. Lee, T. Chang, K. Lee, J. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys., A Mater. Sci. Process. 79(8), 2027–2031 (2004).

Mao, P.

P. Mao and J. Han, “Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding,” Lab Chip 5(8), 837–844 (2005).
[CrossRef] [PubMed]

Mersal, G.

U. Bilitewski, M. Genrich, S. Kadow, and G. Mersal, “Biochemical analysis with microfluidic systems,” Anal. Bioanal. Chem. 377(3), 556–569 (2003).
[CrossRef] [PubMed]

Morton, K. J.

Q. Xia, K. J. Morton, R. H. Austin, and S. Y. Chou, “Sub-10 nm self-enclosed self-limited nanofluidic channel arrays,” Nano Lett. 8(11), 3830–3833 (2008).
[CrossRef] [PubMed]

Rao, V.

H. A. Reed, C. E. White, V. Rao, S. A. B. Allen, C. L. Henderson, and P. A. Kohl, “Fabrication of microchannels using polycarbonates as sacrificial materials,” J. Micromech. Microeng. 11(6), 733–737 (2001).
[CrossRef]

Reed, H. A.

H. A. Reed, C. E. White, V. Rao, S. A. B. Allen, C. L. Henderson, and P. A. Kohl, “Fabrication of microchannels using polycarbonates as sacrificial materials,” J. Micromech. Microeng. 11(6), 733–737 (2001).
[CrossRef]

Schwartz, B. J.

Shah, L.

Shiakolas, P. S.

N. Uppal and P. S. Shiakolas, “Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics,” J. Micro-Nanolithogr. Mems and Moems 7(4), 043002 (2008).
[CrossRef]

Sturm, J. C.

W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14(6), 578–583 (2003).
[CrossRef]

Sun, H.

H. Sun, K. Takada, M. Kim, K. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

Takada, K.

H. Sun, K. Takada, M. Kim, K. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

Tan, B.

S. Jariwala, K. Venkatakrishnan, and B. Tan, “Micro-fluidic channel fabrication via two-photon absorption (TPA) polymerization assisted ablation,” J. Micromech. Microeng. 19(11), 115023–115029 (2009).
[CrossRef]

K. Venkatakrishnan, S. Jariwala, and B. Tan, “Maskless fabrication of nano-fluidic channels by two-photon absorption (TPA) polymerization of SU-8 on glass substrate,” Opt. Express 17(4), 2756–2762 (2009).
[CrossRef] [PubMed]

Tegenfeldt, J. O.

W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14(6), 578–583 (2003).
[CrossRef]

Uppal, N.

N. Uppal and P. S. Shiakolas, “Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics,” J. Micro-Nanolithogr. Mems and Moems 7(4), 043002 (2008).
[CrossRef]

Venkatakrishnan, K.

S. Jariwala, K. Venkatakrishnan, and B. Tan, “Micro-fluidic channel fabrication via two-photon absorption (TPA) polymerization assisted ablation,” J. Micromech. Microeng. 19(11), 115023–115029 (2009).
[CrossRef]

K. Venkatakrishnan, S. Jariwala, and B. Tan, “Maskless fabrication of nano-fluidic channels by two-photon absorption (TPA) polymerization of SU-8 on glass substrate,” Opt. Express 17(4), 2756–2762 (2009).
[CrossRef] [PubMed]

Vrijen, R.

Wang, J.

C. Lee, T. Chang, K. Lee, J. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys., A Mater. Sci. Process. 79(8), 2027–2031 (2004).

White, C. E.

H. A. Reed, C. E. White, V. Rao, S. A. B. Allen, C. L. Henderson, and P. A. Kohl, “Fabrication of microchannels using polycarbonates as sacrificial materials,” J. Micromech. Microeng. 11(6), 733–737 (2001).
[CrossRef]

Witzgall, G.

Xia, Q.

Q. Xia, K. J. Morton, R. H. Austin, and S. Y. Chou, “Sub-10 nm self-enclosed self-limited nanofluidic channel arrays,” Nano Lett. 8(11), 3830–3833 (2008).
[CrossRef] [PubMed]

Yablonovitch, E.

Anal. Bioanal. Chem. (1)

U. Bilitewski, M. Genrich, S. Kadow, and G. Mersal, “Biochemical analysis with microfluidic systems,” Anal. Bioanal. Chem. 377(3), 556–569 (2003).
[CrossRef] [PubMed]

Appl. Phys. A Mater. Sci. Process. (1)

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800 nm pulses,” Appl. Phys. A Mater. Sci. Process. 80(8), 1717–1724 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

H. Sun, K. Takada, M. Kim, K. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

C. Lee, T. Chang, K. Lee, J. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys., A Mater. Sci. Process. 79(8), 2027–2031 (2004).

J. Micro-Nanolithogr. Mems and Moems (1)

N. Uppal and P. S. Shiakolas, “Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics,” J. Micro-Nanolithogr. Mems and Moems 7(4), 043002 (2008).
[CrossRef]

J. Micromech. Microeng. (2)

S. Jariwala, K. Venkatakrishnan, and B. Tan, “Micro-fluidic channel fabrication via two-photon absorption (TPA) polymerization assisted ablation,” J. Micromech. Microeng. 19(11), 115023–115029 (2009).
[CrossRef]

H. A. Reed, C. E. White, V. Rao, S. A. B. Allen, C. L. Henderson, and P. A. Kohl, “Fabrication of microchannels using polycarbonates as sacrificial materials,” J. Micromech. Microeng. 11(6), 733–737 (2001).
[CrossRef]

Lab Chip (2)

C. Haber, “Microfluidics in commercial applications; an industry perspective,” Lab Chip 6(9), 1118–1121 (2006).
[CrossRef] [PubMed]

P. Mao and J. Han, “Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding,” Lab Chip 5(8), 837–844 (2005).
[CrossRef] [PubMed]

Microelectron. Eng. (1)

T. Fujii, “PDMS-based microfluidic devices for biomedical applications,” Microelectron. Eng. 61–62(1-3), 907–914 (2002).
[CrossRef]

Nano Lett. (1)

Q. Xia, K. J. Morton, R. H. Austin, and S. Y. Chou, “Sub-10 nm self-enclosed self-limited nanofluidic channel arrays,” Nano Lett. 8(11), 3830–3833 (2008).
[CrossRef] [PubMed]

Nanotechnology (1)

W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14(6), 578–583 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic drawing of fabrication process (a) laser scanning step (b) channel after development step

Fig. 2
Fig. 2

SEM image of enclosed channels

Fig. 3
Fig. 3

Voxel and surrounding sub-activated region

Fig. 4
Fig. 4

Linking by sub-sequent polymerization (a) when the focal plane is above the substrate (b) when the focal plane is below the substrate

Fig. 5
Fig. 5

SEM images of roofing between two adjacent ribs (a) 2.48 ps, 13 MHZ, 15 µm offset, 260 mW, 150 mm/s, scale bar 5 µm (b) 2.48ps, 26 MHz, 6 µm offset, 296 mw, 150 mm/s, scale bar 10 µm.

Fig. 6
Fig. 6

Ripple at the bottom of the channel, 2.48 ps, 26 MHz, 274mW, 150 mm/s

Fig. 7
Fig. 7

Co-existing roofing and ripples 2.48 ps, 26 MHz, 230mW, 150 mm/s

Fig. 8
Fig. 8

Enclosed fluidic channel arrays 2.48 ps, 26 MHz, 300 mm/s (a)932 mW (b) 587 mW

Fig. 9
Fig. 9

Enclosed fluidic channels (a) 428 fs, 26MHz, 455mW, 100 mm/s (b) 1.42 ps, 26MHz, 587mW, 100 mm/s (c) 2.48 ps, 26MHz, 320mW, 100 mm/s

Fig. 10
Fig. 10

Polymerized ribs with spot-overlap (a) no spot-overlap (b) 55% spot-overlap (c) 90% spot-overlap

Metrics