Abstract

Most time-resolved optical experiments rely either on external mechanical delay lines or on two synchronized femtosecond lasers to achieve a defined temporal delay between two optical pulses. Here, we present a new method which does not require any external delay lines and uses only a single femtosecond laser. It is based on the cross-correlation of an optical pulse with a subsequent pulse from the same laser. Temporal delay between these two pulses is achieved by varying the repetition rate of the laser. We validate the new scheme by a comparison with a cross-correlation measurement carried out with a conventional mechanical delay line.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Zewail, “Femtochemistry: Atomi-Scale Dynamics of the Chemical Bond,” J. Phys. Chem. A 104(24), 5660–5694 (2000).
    [CrossRef]
  2. V. Sundström, “Femtobiology,” Annu. Rev. Phys. Chem. 59(1), 53–77 (2008).
    [CrossRef]
  3. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, 2nd Edition (Springer, Berlin, 1999).
  4. S. T. Cundiff, “Coherent spectroscopy of semiconductors,” Opt. Express 16(7), 4639–4664 (2008).
    [CrossRef] [PubMed]
  5. M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Express 18, 950–952 (1993).
  6. M. J. Stevens, A. L. Smirl, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Coherent control of an optically injected ballistic spin-polarized current in bulk GaAs,” J. Appl. Phys. 91(7), 4382–4386 (2002).
    [CrossRef]
  7. S. Hunsche, D. M. Mittleman, M. Koch, and M. C. Nuss, ““New Dimensions in T-Ray Imaging,” IEICE Trans. Electron,” E 81-C, 269–276 (1998).
  8. N. C. J. van der Valk, W. A. M. van der Marel, and P. C. M. Planken, “Terahertz polarization imaging,” Opt. Lett. 30(20), 2802–2804 (2005).
    [CrossRef] [PubMed]
  9. R. L. Fork and F. A. Beisser, “Real-time intensity autocorrelation interferometer,” Appl. Opt. 17(22), 3534–3535 (1978).
    [CrossRef] [PubMed]
  10. K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, and A. Dienes, “400-Hz mechanical scanning optical delay line,” Opt. Lett. 18(7), 558–560 (1993).
    [CrossRef] [PubMed]
  11. X. Liu, M. J. Cobb, and X. Li, “Rapid scanning all-reflective optical delay line for real-time optical coherence tomography,” Opt. Lett. 29(1), 80–82 (2004).
    [CrossRef] [PubMed]
  12. P.-L. Hsiung, X. Li, C. Chudoba, I. Hartl, T. H. Ko, and J. G. Fujimoto, “High-speed path-length scanning with a multiple-pass cavity delay line,” Appl. Opt. 42(4), 640–648 (2003).
    [CrossRef] [PubMed]
  13. J. Xu, Z. Lu, and X.-C. Zhang, “Compact involute optical delay line,” Electron. Lett. 40(19), 1218–1219 (2004).
    [CrossRef]
  14. M. Salhi, F. Rutz, T. Kleine-Ostmann, V. Petukhov, C. Metz, and M. Koch, “Spiral Optical Delay Line,” Proceedings of Optical Terahertz Science and Technology (Orlando, USA, March 2005).
  15. P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, “Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling,” Appl. Opt. 26(19), 4303–4309 (1987).
    [CrossRef] [PubMed]
  16. A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88(4), 041117 (2006).
    [CrossRef]
  17. V. A. Stoica, Y.-M. Sheu, D. A. Reis, and R. Clarke, “Wideband detection of transient solid-state dynamics using ultrafast fiber lasers and asynchronous optical sampling,” Opt. Express 16(4), 2322–2335 (2008).
    [CrossRef] [PubMed]
  18. T. Hochrein, N. Krumbholz, and M. Koch, “Verfahren zum Erzeugen zweier optischer Pulse mit variablen, zeitlichen Pulsabstand,“ PCT Patent Application No. PCT/DE 2009/000662 (2009).
  19. E. Hecht, “Optics,” 4th ed. (Addison-Wesley Longman, Amsterdam, Netherlands, 2003).
  20. H. Menlo Systems Gmb, http://www.menlosystems.com

2008 (3)

2006 (1)

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88(4), 041117 (2006).
[CrossRef]

2005 (1)

2004 (2)

2003 (1)

2002 (1)

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Coherent control of an optically injected ballistic spin-polarized current in bulk GaAs,” J. Appl. Phys. 91(7), 4382–4386 (2002).
[CrossRef]

2000 (1)

A. H. Zewail, “Femtochemistry: Atomi-Scale Dynamics of the Chemical Bond,” J. Phys. Chem. A 104(24), 5660–5694 (2000).
[CrossRef]

1998 (1)

S. Hunsche, D. M. Mittleman, M. Koch, and M. C. Nuss, ““New Dimensions in T-Ray Imaging,” IEICE Trans. Electron,” E 81-C, 269–276 (1998).

1993 (2)

M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Express 18, 950–952 (1993).

K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, and A. Dienes, “400-Hz mechanical scanning optical delay line,” Opt. Lett. 18(7), 558–560 (1993).
[CrossRef] [PubMed]

1987 (1)

1978 (1)

Bartels, A.

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88(4), 041117 (2006).
[CrossRef]

Beisser, F. A.

Bhat, R. D. R.

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Coherent control of an optically injected ballistic spin-polarized current in bulk GaAs,” J. Appl. Phys. 91(7), 4382–4386 (2002).
[CrossRef]

Chu, K. C.

Chudoba, C.

Clarke, R.

Cobb, M. J.

Cundiff, S. T.

Dekorsy, T.

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88(4), 041117 (2006).
[CrossRef]

Dienes, A.

Elzinga, P. A.

Fork, R. L.

Fujimoto, J. G.

P.-L. Hsiung, X. Li, C. Chudoba, I. Hartl, T. H. Ko, and J. G. Fujimoto, “High-speed path-length scanning with a multiple-pass cavity delay line,” Appl. Opt. 42(4), 640–648 (2003).
[CrossRef] [PubMed]

M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Express 18, 950–952 (1993).

Hartl, I.

Hee, M. R.

M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Express 18, 950–952 (1993).

Heritage, J. P.

Hsiung, P.-L.

Hudert, F.

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88(4), 041117 (2006).
[CrossRef]

Hunsche, S.

S. Hunsche, D. M. Mittleman, M. Koch, and M. C. Nuss, ““New Dimensions in T-Ray Imaging,” IEICE Trans. Electron,” E 81-C, 269–276 (1998).

Izatt, J. A.

M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Express 18, 950–952 (1993).

Jacobson, J. M.

M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Express 18, 950–952 (1993).

Janke, C.

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88(4), 041117 (2006).
[CrossRef]

Jiang, Y.

King, G. B.

Kneisler, R. J.

Ko, T. H.

Koch, M.

S. Hunsche, D. M. Mittleman, M. Koch, and M. C. Nuss, ““New Dimensions in T-Ray Imaging,” IEICE Trans. Electron,” E 81-C, 269–276 (1998).

Köhler, K.

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88(4), 041117 (2006).
[CrossRef]

Kwong, K. F.

Laurendeau, N. M.

Li, X.

Liu, X.

Lu, Z.

J. Xu, Z. Lu, and X.-C. Zhang, “Compact involute optical delay line,” Electron. Lett. 40(19), 1218–1219 (2004).
[CrossRef]

Lytle, F. E.

Mittleman, D. M.

S. Hunsche, D. M. Mittleman, M. Koch, and M. C. Nuss, ““New Dimensions in T-Ray Imaging,” IEICE Trans. Electron,” E 81-C, 269–276 (1998).

Nuss, M. C.

S. Hunsche, D. M. Mittleman, M. Koch, and M. C. Nuss, ““New Dimensions in T-Ray Imaging,” IEICE Trans. Electron,” E 81-C, 269–276 (1998).

Planken, P. C. M.

Reis, D. A.

Sheu, Y.-M.

Sipe, J. E.

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Coherent control of an optically injected ballistic spin-polarized current in bulk GaAs,” J. Appl. Phys. 91(7), 4382–4386 (2002).
[CrossRef]

Smirl, A. L.

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Coherent control of an optically injected ballistic spin-polarized current in bulk GaAs,” J. Appl. Phys. 91(7), 4382–4386 (2002).
[CrossRef]

Stevens, M. J.

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Coherent control of an optically injected ballistic spin-polarized current in bulk GaAs,” J. Appl. Phys. 91(7), 4382–4386 (2002).
[CrossRef]

Stoica, V. A.

Sundström, V.

V. Sundström, “Femtobiology,” Annu. Rev. Phys. Chem. 59(1), 53–77 (2008).
[CrossRef]

Swanson, E. A.

M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Express 18, 950–952 (1993).

van der Marel, W. A. M.

van der Valk, N. C. J.

van Driel, H. M.

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Coherent control of an optically injected ballistic spin-polarized current in bulk GaAs,” J. Appl. Phys. 91(7), 4382–4386 (2002).
[CrossRef]

Xu, J.

J. Xu, Z. Lu, and X.-C. Zhang, “Compact involute optical delay line,” Electron. Lett. 40(19), 1218–1219 (2004).
[CrossRef]

Yankelevich, D.

Zewail, A. H.

A. H. Zewail, “Femtochemistry: Atomi-Scale Dynamics of the Chemical Bond,” J. Phys. Chem. A 104(24), 5660–5694 (2000).
[CrossRef]

Zhang, X.-C.

J. Xu, Z. Lu, and X.-C. Zhang, “Compact involute optical delay line,” Electron. Lett. 40(19), 1218–1219 (2004).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

V. Sundström, “Femtobiology,” Annu. Rev. Phys. Chem. 59(1), 53–77 (2008).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88(4), 041117 (2006).
[CrossRef]

E (1)

S. Hunsche, D. M. Mittleman, M. Koch, and M. C. Nuss, ““New Dimensions in T-Ray Imaging,” IEICE Trans. Electron,” E 81-C, 269–276 (1998).

Electron. Lett. (1)

J. Xu, Z. Lu, and X.-C. Zhang, “Compact involute optical delay line,” Electron. Lett. 40(19), 1218–1219 (2004).
[CrossRef]

J. Appl. Phys. (1)

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Coherent control of an optically injected ballistic spin-polarized current in bulk GaAs,” J. Appl. Phys. 91(7), 4382–4386 (2002).
[CrossRef]

J. Phys. Chem. A (1)

A. H. Zewail, “Femtochemistry: Atomi-Scale Dynamics of the Chemical Bond,” J. Phys. Chem. A 104(24), 5660–5694 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Other (5)

J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, 2nd Edition (Springer, Berlin, 1999).

M. Salhi, F. Rutz, T. Kleine-Ostmann, V. Petukhov, C. Metz, and M. Koch, “Spiral Optical Delay Line,” Proceedings of Optical Terahertz Science and Technology (Orlando, USA, March 2005).

T. Hochrein, N. Krumbholz, and M. Koch, “Verfahren zum Erzeugen zweier optischer Pulse mit variablen, zeitlichen Pulsabstand,“ PCT Patent Application No. PCT/DE 2009/000662 (2009).

E. Hecht, “Optics,” 4th ed. (Addison-Wesley Longman, Amsterdam, Netherlands, 2003).

H. Menlo Systems Gmb, http://www.menlosystems.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Visualization of the working principle of the new method: A pulse source continuously generates a regular pulse sequence. Two partial beams are split via a beam splitter (BS) and each of it arrives at a target. A temporal delay td between the two pulse trains is caused by an additional fixed path length ld the beam splitter and the deflection mirror (M). Two different pulses are considered (a ≠ 0).

Fig. 2
Fig. 2

Experimental setup for the cross-correlation measurements. The femtosecond fiber laser has a fiber-coupled and a free-space exit. The optical fiber with a length of 1600 mm was dispersion pre-compensated. Further components: conventional mechanical delay line (M4), lenses (L), mirrors (M), photodiode (PD), polarization beam splitter cube (PBS) and a short wavelength pass filter.

Fig. 3
Fig. 3

Cross-correlation measurements. Red: delay stage scan with a fixed repetition rate. Black: frequency scan with a fixed delay line position. The top x-axis represents the repetition rate corresponding to the pulse delay.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ t = t d a τ r e p .
Δ t var = a ( f min 1 f max 1 ) .
l d = a c 0 f min n ,

Metrics