Abstract

We present a description of a multiple excitation of localized surface plasmons (LSPs) from an Au nanoparticle (NP) array-based ridge waveguide to create a small optical spot size with an extremely strong intensity. Using a numerical finite-difference time-domain method, we find that the optical intensity of the ridge waveguide with an Au NP array is about 700% higher than that of a simple ridge waveguide. Moreover, the spacing between the NPs plays an important role in the multiple excitation of LSPs. The spot size, calculated at FWHM, is 10 nm × 10 nm at a distance of 5 nm from the exit plane.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
    [CrossRef]
  2. K. Şendur, A. W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
    [CrossRef]
  3. T. McDaniel and W. Challener, “Issues in the design of media for hybrid recording,” Trans. Magn. Soc. Jpn. 2, 316–321 (2002).
  4. J. M. A. van den Eerenbeemd, D. M. Bruls, C. A. Verschuren, B. Yin, and F. Zijp, “Towards a Multi Layer Near-Field Recording System: Dual-Layer Recording Results,” Jpn. J. Appl. Phys. 46(No. 6B), 3894–3897 (2007).
    [CrossRef]
  5. Y. J. Yoon, W. C. Kim, H. Choi, N. C. Park, S. Kang, and Y. P. Park, “Design and Analysis of Replicated Solid Immersion Lens for Large Thickness Tolerance in Near-Field Recording,” Jpn. J. Appl. Phys. 47(7), 5927–5932 (2008).
    [CrossRef]
  6. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
    [CrossRef] [PubMed]
  7. K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
    [CrossRef] [PubMed]
  8. E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
    [CrossRef]
  9. H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16(11), 7756–7766 (2008).
    [CrossRef] [PubMed]
  10. S. Kim, J. Jin, Y.-J. Kim, I. Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [CrossRef] [PubMed]
  11. K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210(3), 294–300 (2003).
    [CrossRef] [PubMed]
  12. E. X. Jin and X. Xu, “Finite-Difference Time-Domain Studies on Optical Transmission through Planar Nano-Apertures in a Metal Film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
    [CrossRef]
  13. X. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28(15), 1320–1322 (2003).
    [CrossRef] [PubMed]
  14. D. D. Stancil, A. Itagi, T. E. Schlesinger, J. Bain, and T. Rausch, “Device with waveguide defined by dielectric in aperture of cross-track portion of electrical conductor for writing data to a recording medium,” US Patent Application No. 10/256809.
  15. A. V. Itagi, D. D. Stancil, J. A. Bain, and T. E. Schlesinger, “Ridge waveguide as a near-field optical source,” Appl. Phys. Lett. 83(22), 4474–4476 (2003).
    [CrossRef]
  16. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  17. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
    [CrossRef]
  18. A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30, 368–375 (2005).
    [CrossRef]
  19. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26(14), 1096–1098 (2001).
    [CrossRef]
  20. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  21. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Material Science 25 (Springer-Verlag, Berlin, 1995).
  22. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
    [CrossRef]
  23. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [CrossRef] [PubMed]
  24. K. Kunz, and R. Lubbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, FL, 1996) p.11, p.123.
  25. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 2000).
  26. W. A. Challener, E. Gage, A. Itagi, and C. Peng, “Optical Transducers for Near Field Recording,” Jpn. J. Appl. Phys. 45(No. 8B), 6632–6642 (2006).
    [CrossRef]
  27. Remcom Inc.: XFDTD 6.5 software (2008).
  28. G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23(4), 377–382 (1981).
    [CrossRef]
  29. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, FL, 1996).
  30. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
    [CrossRef]
  31. H. Raether, “Surface plasma oscillations and their applications,” Phys. Thin Film 9, 145–261 (1977).
  32. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
    [CrossRef]
  33. J. R. Krenn, M. Salerno, N. Felidj, B. Lamprecht, G. Schider, A. Leitner, F. R. Aussenegg, J. C. Weeber, A. Dereux, and J. P. Goudonnet, “Light field propagation by metal micro- and nanostructures,” J. Microsc. 202(1), 122–128 (2001).
    [CrossRef] [PubMed]
  34. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
    [CrossRef]
  35. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
    [CrossRef]
  36. D. S. Citrin, “Coherent transport of excitons in quantum-dot chains: role of retardation,” Opt. Lett. 20(8), 901–903 (1995).
    [CrossRef] [PubMed]
  37. D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
    [CrossRef]
  38. B. W. van der Meer, G. Coker, and S.-Y. S. Chen, “Resonance Energy Transfer (Wiley,” New York •••, 35 (1994).
  39. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26(14), 1096–1098 (2001).
    [CrossRef]
  40. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters (Springer,1995).

2008 (4)

Y. J. Yoon, W. C. Kim, H. Choi, N. C. Park, S. Kang, and Y. P. Park, “Design and Analysis of Replicated Solid Immersion Lens for Large Thickness Tolerance in Near-Field Recording,” Jpn. J. Appl. Phys. 47(7), 5927–5932 (2008).
[CrossRef]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

S. Kim, J. Jin, Y.-J. Kim, I. Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16(11), 7756–7766 (2008).
[CrossRef] [PubMed]

2007 (1)

J. M. A. van den Eerenbeemd, D. M. Bruls, C. A. Verschuren, B. Yin, and F. Zijp, “Towards a Multi Layer Near-Field Recording System: Dual-Layer Recording Results,” Jpn. J. Appl. Phys. 46(No. 6B), 3894–3897 (2007).
[CrossRef]

2006 (1)

W. A. Challener, E. Gage, A. Itagi, and C. Peng, “Optical Transducers for Near Field Recording,” Jpn. J. Appl. Phys. 45(No. 8B), 6632–6642 (2006).
[CrossRef]

2005 (2)

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30, 368–375 (2005).
[CrossRef]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[CrossRef]

2004 (3)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

E. X. Jin and X. Xu, “Finite-Difference Time-Domain Studies on Optical Transmission through Planar Nano-Apertures in a Metal Film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[CrossRef]

K. Şendur, A. W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[CrossRef]

2003 (8)

P. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[CrossRef]

K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210(3), 294–300 (2003).
[CrossRef] [PubMed]

K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
[CrossRef] [PubMed]

A. V. Itagi, D. D. Stancil, J. A. Bain, and T. E. Schlesinger, “Ridge waveguide as a near-field optical source,” Appl. Phys. Lett. 83(22), 4474–4476 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

X. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28(15), 1320–1322 (2003).
[CrossRef] [PubMed]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

2002 (2)

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[CrossRef]

T. McDaniel and W. Challener, “Issues in the design of media for hybrid recording,” Trans. Magn. Soc. Jpn. 2, 316–321 (2002).

2001 (4)

2000 (1)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
[CrossRef]

1999 (1)

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[CrossRef]

1995 (1)

1994 (1)

B. W. van der Meer, G. Coker, and S.-Y. S. Chen, “Resonance Energy Transfer (Wiley,” New York •••, 35 (1994).

1981 (1)

G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23(4), 377–382 (1981).
[CrossRef]

1977 (1)

H. Raether, “Surface plasma oscillations and their applications,” Phys. Thin Film 9, 145–261 (1977).

1953 (1)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[CrossRef]

Akhremitchev, B. B.

P. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
[CrossRef]

Aussenegg, F. R.

J. R. Krenn, M. Salerno, N. Felidj, B. Lamprecht, G. Schider, A. Leitner, F. R. Aussenegg, J. C. Weeber, A. Dereux, and J. P. Goudonnet, “Light field propagation by metal micro- and nanostructures,” J. Microsc. 202(1), 122–128 (2001).
[CrossRef] [PubMed]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[CrossRef]

Bain, J. A.

P. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[CrossRef]

A. V. Itagi, D. D. Stancil, J. A. Bain, and T. E. Schlesinger, “Ridge waveguide as a near-field optical source,” Appl. Phys. Lett. 83(22), 4474–4476 (2003).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bogy, D. B.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Bourillot, E.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[CrossRef]

Brongersma, M. L.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
[CrossRef]

Bruls, D. M.

J. M. A. van den Eerenbeemd, D. M. Bruls, C. A. Verschuren, B. Yin, and F. Zijp, “Towards a Multi Layer Near-Field Recording System: Dual-Layer Recording Results,” Jpn. J. Appl. Phys. 46(No. 6B), 3894–3897 (2007).
[CrossRef]

Challener, A. W.

K. Şendur, A. W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[CrossRef]

Challener, W.

K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
[CrossRef] [PubMed]

T. McDaniel and W. Challener, “Issues in the design of media for hybrid recording,” Trans. Magn. Soc. Jpn. 2, 316–321 (2002).

Challener, W. A.

W. A. Challener, E. Gage, A. Itagi, and C. Peng, “Optical Transducers for Near Field Recording,” Jpn. J. Appl. Phys. 45(No. 8B), 6632–6642 (2006).
[CrossRef]

Chen, P. F.

P. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[CrossRef]

Chen, S.-Y. S.

B. W. van der Meer, G. Coker, and S.-Y. S. Chen, “Resonance Energy Transfer (Wiley,” New York •••, 35 (1994).

Choi, H.

Y. J. Yoon, W. C. Kim, H. Choi, N. C. Park, S. Kang, and Y. P. Park, “Design and Analysis of Replicated Solid Immersion Lens for Large Thickness Tolerance in Near-Field Recording,” Jpn. J. Appl. Phys. 47(7), 5927–5932 (2008).
[CrossRef]

Citrin, D. S.

Coker, G.

B. W. van der Meer, G. Coker, and S.-Y. S. Chen, “Resonance Energy Transfer (Wiley,” New York •••, 35 (1994).

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

J. R. Krenn, M. Salerno, N. Felidj, B. Lamprecht, G. Schider, A. Leitner, F. R. Aussenegg, J. C. Weeber, A. Dereux, and J. P. Goudonnet, “Light field propagation by metal micro- and nanostructures,” J. Microsc. 202(1), 122–128 (2001).
[CrossRef] [PubMed]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[CrossRef]

Dexter, D. L.

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[CrossRef]

Ebbesen, T. W.

Felidj, N.

J. R. Krenn, M. Salerno, N. Felidj, B. Lamprecht, G. Schider, A. Leitner, F. R. Aussenegg, J. C. Weeber, A. Dereux, and J. P. Goudonnet, “Light field propagation by metal micro- and nanostructures,” J. Microsc. 202(1), 122–128 (2001).
[CrossRef] [PubMed]

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

Fu, L.

Gage, E.

W. A. Challener, E. Gage, A. Itagi, and C. Peng, “Optical Transducers for Near Field Recording,” Jpn. J. Appl. Phys. 45(No. 8B), 6632–6642 (2006).
[CrossRef]

Giessen, H.

Girard, C.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[CrossRef]

Gotschy, W.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[CrossRef]

Goudonnet, J. P.

J. R. Krenn, M. Salerno, N. Felidj, B. Lamprecht, G. Schider, A. Leitner, F. R. Aussenegg, J. C. Weeber, A. Dereux, and J. P. Goudonnet, “Light field propagation by metal micro- and nanostructures,” J. Microsc. 202(1), 122–128 (2001).
[CrossRef] [PubMed]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[CrossRef]

Guo, H.

Haes, A. J.

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30, 368–375 (2005).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
[CrossRef]

Haynes, C. L.

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30, 368–375 (2005).
[CrossRef]

Hesselink, L.

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

Itagi, A.

W. A. Challener, E. Gage, A. Itagi, and C. Peng, “Optical Transducers for Near Field Recording,” Jpn. J. Appl. Phys. 45(No. 8B), 6632–6642 (2006).
[CrossRef]

P. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[CrossRef]

Itagi, A. V.

A. V. Itagi, D. D. Stancil, J. A. Bain, and T. E. Schlesinger, “Ridge waveguide as a near-field optical source,” Appl. Phys. Lett. 83(22), 4474–4476 (2003).
[CrossRef]

Jin, E. X.

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[CrossRef]

E. X. Jin and X. Xu, “Finite-Difference Time-Domain Studies on Optical Transmission through Planar Nano-Apertures in a Metal Film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[CrossRef]

Jin, J.

S. Kim, J. Jin, Y.-J. Kim, I. Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kang, S.

Y. J. Yoon, W. C. Kim, H. Choi, N. C. Park, S. Kang, and Y. P. Park, “Design and Analysis of Replicated Solid Immersion Lens for Large Thickness Tolerance in Near-Field Recording,” Jpn. J. Appl. Phys. 47(7), 5927–5932 (2008).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[CrossRef]

Kim, S.

S. Kim, J. Jin, Y.-J. Kim, I. Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, S.-W.

S. Kim, J. Jin, Y.-J. Kim, I. Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, W. C.

Y. J. Yoon, W. C. Kim, H. Choi, N. C. Park, S. Kang, and Y. P. Park, “Design and Analysis of Replicated Solid Immersion Lens for Large Thickness Tolerance in Near-Field Recording,” Jpn. J. Appl. Phys. 47(7), 5927–5932 (2008).
[CrossRef]

Kim, Y.

S. Kim, J. Jin, Y.-J. Kim, I. Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.-J.

S. Kim, J. Jin, Y.-J. Kim, I. Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Kottmann, J. P.

Krenn, J. R.

J. R. Krenn, M. Salerno, N. Felidj, B. Lamprecht, G. Schider, A. Leitner, F. R. Aussenegg, J. C. Weeber, A. Dereux, and J. P. Goudonnet, “Light field propagation by metal micro- and nanostructures,” J. Microsc. 202(1), 122–128 (2001).
[CrossRef] [PubMed]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[CrossRef]

Lacroute, Y.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[CrossRef]

Lamprecht, B.

J. R. Krenn, M. Salerno, N. Felidj, B. Lamprecht, G. Schider, A. Leitner, F. R. Aussenegg, J. C. Weeber, A. Dereux, and J. P. Goudonnet, “Light field propagation by metal micro- and nanostructures,” J. Microsc. 202(1), 122–128 (2001).
[CrossRef] [PubMed]

Leitner, A.

J. R. Krenn, M. Salerno, N. Felidj, B. Lamprecht, G. Schider, A. Leitner, F. R. Aussenegg, J. C. Weeber, A. Dereux, and J. P. Goudonnet, “Light field propagation by metal micro- and nanostructures,” J. Microsc. 202(1), 122–128 (2001).
[CrossRef] [PubMed]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[CrossRef]

Lezec, H. J.

Linke, R. A.

Liu, N.

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[CrossRef]

Martin, O. J. F.

McDaniel, T.

T. McDaniel and W. Challener, “Issues in the design of media for hybrid recording,” Trans. Magn. Soc. Jpn. 2, 316–321 (2002).

McFarland, A. D.

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30, 368–375 (2005).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Meyrath, T. P.

Mock, J. J.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Mur, G.

G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23(4), 377–382 (1981).
[CrossRef]

Pan, L.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Park, I. Y.

S. Kim, J. Jin, Y.-J. Kim, I. Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Park, N. C.

Y. J. Yoon, W. C. Kim, H. Choi, N. C. Park, S. Kang, and Y. P. Park, “Design and Analysis of Replicated Solid Immersion Lens for Large Thickness Tolerance in Near-Field Recording,” Jpn. J. Appl. Phys. 47(7), 5927–5932 (2008).
[CrossRef]

Park, Y. P.

Y. J. Yoon, W. C. Kim, H. Choi, N. C. Park, S. Kang, and Y. P. Park, “Design and Analysis of Replicated Solid Immersion Lens for Large Thickness Tolerance in Near-Field Recording,” Jpn. J. Appl. Phys. 47(7), 5927–5932 (2008).
[CrossRef]

Pellerin, K. M.

Peng, C.

W. A. Challener, E. Gage, A. Itagi, and C. Peng, “Optical Transducers for Near Field Recording,” Jpn. J. Appl. Phys. 45(No. 8B), 6632–6642 (2006).
[CrossRef]

K. Şendur, A. W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[CrossRef]

Raether, H.

H. Raether, “Surface plasma oscillations and their applications,” Phys. Thin Film 9, 145–261 (1977).

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Salerno, M.

J. R. Krenn, M. Salerno, N. Felidj, B. Lamprecht, G. Schider, A. Leitner, F. R. Aussenegg, J. C. Weeber, A. Dereux, and J. P. Goudonnet, “Light field propagation by metal micro- and nanostructures,” J. Microsc. 202(1), 122–128 (2001).
[CrossRef] [PubMed]

Schatz, G. C.

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30, 368–375 (2005).
[CrossRef]

Schider, G.

J. R. Krenn, M. Salerno, N. Felidj, B. Lamprecht, G. Schider, A. Leitner, F. R. Aussenegg, J. C. Weeber, A. Dereux, and J. P. Goudonnet, “Light field propagation by metal micro- and nanostructures,” J. Microsc. 202(1), 122–128 (2001).
[CrossRef] [PubMed]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[CrossRef]

Schlesinger, T. E.

P. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[CrossRef]

A. V. Itagi, D. D. Stancil, J. A. Bain, and T. E. Schlesinger, “Ridge waveguide as a near-field optical source,” Appl. Phys. Lett. 83(22), 4474–4476 (2003).
[CrossRef]

Schultz, S.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Schweizer, H.

Sendur, K.

K. Şendur, A. W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[CrossRef]

K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
[CrossRef] [PubMed]

Shi, X.

Smith, D. R.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Srituravanich, W.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Stancil, D. D.

P. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[CrossRef]

A. V. Itagi, D. D. Stancil, J. A. Bain, and T. E. Schlesinger, “Ridge waveguide as a near-field optical source,” Appl. Phys. Lett. 83(22), 4474–4476 (2003).
[CrossRef]

Stebounova, L.

P. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[CrossRef]

Su, K. H.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Sun, C.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Tanaka, K.

K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210(3), 294–300 (2003).
[CrossRef] [PubMed]

Tanaka, M.

K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210(3), 294–300 (2003).
[CrossRef] [PubMed]

Thio, T.

Thornton, R. L.

van den Eerenbeemd, J. M. A.

J. M. A. van den Eerenbeemd, D. M. Bruls, C. A. Verschuren, B. Yin, and F. Zijp, “Towards a Multi Layer Near-Field Recording System: Dual-Layer Recording Results,” Jpn. J. Appl. Phys. 46(No. 6B), 3894–3897 (2007).
[CrossRef]

van der Meer, B. W.

B. W. van der Meer, G. Coker, and S.-Y. S. Chen, “Resonance Energy Transfer (Wiley,” New York •••, 35 (1994).

Van Duyne, R. P.

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30, 368–375 (2005).
[CrossRef]

Verschuren, C. A.

J. M. A. van den Eerenbeemd, D. M. Bruls, C. A. Verschuren, B. Yin, and F. Zijp, “Towards a Multi Layer Near-Field Recording System: Dual-Layer Recording Results,” Jpn. J. Appl. Phys. 46(No. 6B), 3894–3897 (2007).
[CrossRef]

Walker, G. C.

P. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[CrossRef]

Wang, Y.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Weeber, J. C.

J. R. Krenn, M. Salerno, N. Felidj, B. Lamprecht, G. Schider, A. Leitner, F. R. Aussenegg, J. C. Weeber, A. Dereux, and J. P. Goudonnet, “Light field propagation by metal micro- and nanostructures,” J. Microsc. 202(1), 122–128 (2001).
[CrossRef] [PubMed]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[CrossRef]

Wei, Q. H.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Xu, X.

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[CrossRef]

E. X. Jin and X. Xu, “Finite-Difference Time-Domain Studies on Optical Transmission through Planar Nano-Apertures in a Metal Film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[CrossRef]

Yin, B.

J. M. A. van den Eerenbeemd, D. M. Bruls, C. A. Verschuren, B. Yin, and F. Zijp, “Towards a Multi Layer Near-Field Recording System: Dual-Layer Recording Results,” Jpn. J. Appl. Phys. 46(No. 6B), 3894–3897 (2007).
[CrossRef]

Yoon, Y. J.

Y. J. Yoon, W. C. Kim, H. Choi, N. C. Park, S. Kang, and Y. P. Park, “Design and Analysis of Replicated Solid Immersion Lens for Large Thickness Tolerance in Near-Field Recording,” Jpn. J. Appl. Phys. 47(7), 5927–5932 (2008).
[CrossRef]

Zentgraf, T.

Zhang, X.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Zijp, F.

J. M. A. van den Eerenbeemd, D. M. Bruls, C. A. Verschuren, B. Yin, and F. Zijp, “Towards a Multi Layer Near-Field Recording System: Dual-Layer Recording Results,” Jpn. J. Appl. Phys. 46(No. 6B), 3894–3897 (2007).
[CrossRef]

Zou, S.

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30, 368–375 (2005).
[CrossRef]

Adv. Mater. (1)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

Appl. Phys. Lett. (4)

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[CrossRef]

P. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[CrossRef]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[CrossRef]

A. V. Itagi, D. D. Stancil, J. A. Bain, and T. E. Schlesinger, “Ridge waveguide as a near-field optical source,” Appl. Phys. Lett. 83(22), 4474–4476 (2003).
[CrossRef]

IEEE Trans. Electromagn. Compat. (1)

G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23(4), 377–382 (1981).
[CrossRef]

J. Appl. Phys. (1)

K. Şendur, A. W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[CrossRef]

J. Chem. Phys. (1)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[CrossRef]

J. Microsc. (3)

K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210(3), 294–300 (2003).
[CrossRef] [PubMed]

K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
[CrossRef] [PubMed]

J. R. Krenn, M. Salerno, N. Felidj, B. Lamprecht, G. Schider, A. Leitner, F. R. Aussenegg, J. C. Weeber, A. Dereux, and J. P. Goudonnet, “Light field propagation by metal micro- and nanostructures,” J. Microsc. 202(1), 122–128 (2001).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (4)

W. A. Challener, E. Gage, A. Itagi, and C. Peng, “Optical Transducers for Near Field Recording,” Jpn. J. Appl. Phys. 45(No. 8B), 6632–6642 (2006).
[CrossRef]

E. X. Jin and X. Xu, “Finite-Difference Time-Domain Studies on Optical Transmission through Planar Nano-Apertures in a Metal Film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[CrossRef]

J. M. A. van den Eerenbeemd, D. M. Bruls, C. A. Verschuren, B. Yin, and F. Zijp, “Towards a Multi Layer Near-Field Recording System: Dual-Layer Recording Results,” Jpn. J. Appl. Phys. 46(No. 6B), 3894–3897 (2007).
[CrossRef]

Y. J. Yoon, W. C. Kim, H. Choi, N. C. Park, S. Kang, and Y. P. Park, “Design and Analysis of Replicated Solid Immersion Lens for Large Thickness Tolerance in Near-Field Recording,” Jpn. J. Appl. Phys. 47(7), 5927–5932 (2008).
[CrossRef]

MRS Bull. (1)

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30, 368–375 (2005).
[CrossRef]

Nano Lett. (1)

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
[CrossRef]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Nature (2)

S. Kim, J. Jin, Y.-J. Kim, I. Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

New York (1)

B. W. van der Meer, G. Coker, and S.-Y. S. Chen, “Resonance Energy Transfer (Wiley,” New York •••, 35 (1994).

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. B (1)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[CrossRef]

Phys. Thin Film (1)

H. Raether, “Surface plasma oscillations and their applications,” Phys. Thin Film 9, 145–261 (1977).

Trans. Magn. Soc. Jpn. (1)

T. McDaniel and W. Challener, “Issues in the design of media for hybrid recording,” Trans. Magn. Soc. Jpn. 2, 316–321 (2002).

Other (8)

D. D. Stancil, A. Itagi, T. E. Schlesinger, J. Bain, and T. Rausch, “Device with waveguide defined by dielectric in aperture of cross-track portion of electrical conductor for writing data to a recording medium,” US Patent Application No. 10/256809.

K. Kunz, and R. Lubbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, FL, 1996) p.11, p.123.

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 2000).

C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Material Science 25 (Springer-Verlag, Berlin, 1995).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, FL, 1996).

Remcom Inc.: XFDTD 6.5 software (2008).

U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters (Springer,1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A ridge waveguide with a dielectric layer and an Au NP array-deposited on a dielectric, with (a) a schematic and (b) the overall dimensions illustrated. The dielectric layer that hosts the Au NP array is located under the bottom surface of the ridge waveguide.

Fig. 2
Fig. 2

The near-field |E|2 intensity distribution of a ridge waveguide (a) in the x-y plane at a distance of 5 nm from the exit plane, (b) in the y-z plane and (c) in the z-x plane; the near-field |E|2 intensity distribution of a ridge waveguide with an Au NP array (d) in the x-y plane at a distance of 5 nm from the exit plane, (e) in the y-z plane and (f) in the z-x plane.

Fig. 3
Fig. 3

Maximum |E|2 intensity profile in cross-sections of the two ridge waveguides at a distance of 5 nm from the exit plane; the intensity of the ridge waveguide with the Au NP array is ~700% higher than that of a simple ridge waveguide. The spot size, calculated at FWHM, is 10 nm × 105 nm for the simple ridge waveguide and 10 nm × 10 nm for the ridge waveguide with an Au NP array.

Fig. 4
Fig. 4

The near-field |E|2 intensity distribution in the y-z plane versus the space between Au NPs for (a) r = 0, (b) r = 0.5, and (c) r = 1, where r is the ratio between the gap spacing and the size of Au NPs. (d) The power density versus NP spacing at a distance of 5 nm from the exit plane.

Fig. 5
Fig. 5

Sketch to illustrate the charge displacement at the metal surface and associated electric fields of SP modes in the y-z plane: (a) Dispersive SP mode, (b) Overlapping SP mode, and (c) Localized SP mode.

Fig. 6
Fig. 6

The near-field |E|2 intensity distribution in the x-y plane at a distance of 5 nm from exit plane versus the thickness of dielectric layer: (a) t = 0 nm, (b) t = 5 nm, (c) t = 10 nm, (d) t = 15 nm, (e) t = 20 nm, and (f) t = 25 nm. (g) The power density at 5 nm away from the exit plane versus thickness of dielectric layer.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ t = 1 c [ 1 Δ x 2 + 1 Δ y 2 + 1 Δ z 2 ] 1 / 2
ε ˜ ( ω ) = ε α + ε s ε α 1 + i ω τ + σ i ω ε 0

Metrics