Abstract

An InGaAsP-InP transistor laser (TL) at 1.55 μm has been designed and modeled. The proposed TL has a deep-ridge waveguide structure with the multiple quantum wells (MQWs) buried in the base-emitter junction, which provides good optical and electrical confinement and can effectively reduce the optical absorption and lateral leakage current. Good laser performance has been predicted by numerical modeling based on which the epitaxial growth was carried out by metalorganic chemical vapor deposition (MOCVD). The effect of p-dopant (Zn) diffusion on the QW performance was investigated by a re-growth procedure. By introducing a graded p-doping profile, the Zn diffusion into the MQWs was effectively controlled. With an average doping density of 1 × 1018 cm−3 in the base contact layer, the InGaAsP MQWs demonstrated high PL intensity at 1.51 μm and clear satellite diffraction peaks in the XRD spectrum.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Holonyak and M. Feng, “The transistor laser,” IEEE Spectr. 43(2), 50–55 (2006).
    [CrossRef]
  2. B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Quantum Electron. 15, 594–603 (2009).
    [CrossRef]
  3. B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
    [CrossRef]
  4. W. Shi, L. Chrosdowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical cavity surface emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
    [CrossRef]
  5. M. Feng, N. Holonyak, H. W. Then, C. H. Wu, and G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
    [CrossRef]
  6. M. Feng, N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of the transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007).
    [CrossRef]
  7. Y. Huang, J.-H. Ryou, and R. D. Dupuis, “Control of Zn diffusion in InP/InAlGaAs-based heterojunction bipolar transistors and light emitting transistors,” J. Cryst. Growth 310(19), 4345–4350 (2008).
    [CrossRef]
  8. M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
    [CrossRef]
  9. F. Dixon, M. Feng, N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
    [CrossRef]
  10. A. Katz, P. M. Thomas, S. N. G. Chu, W. C. Dautremont-Smith, R. G. Sobers, and S. G. Napholtz, “Pt/Ti Ohmic contact to p++-InGaAsP (1.3μm) formed by rapid thermal processing,” J. Appl. Phys. 67(2), 884–889 (1990).
    [CrossRef]
  11. P. Jian, D. G. Ivey, R. Bruce, and G. Knight, “Microstructural study of Au-Pd-Zn ohmic contacts to p-type InGaAsP-InP,” J. Mater. Sci. Mater. Electron. 7(2), 77–83 (1996).
    [CrossRef]
  12. A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000).
    [CrossRef]
  13. J. Piprek, P. Abraham, and J. E. Bowers, “Self-consistent analysis of high-temperature effects on strained-layer multiple quantum-well InGaAsP-InP lasers,” IEEE J. Quantum Electron. 36(3), 366–374 (2000).
    [CrossRef]
  14. Z.-M. Li, “Physical models and numerical simulation of modern semiconductor lasers,” Proc. SPIE 2994, 698–708 (1997).
    [CrossRef]
  15. G. R. Hadley, K. L. Lear, M. E. Warren, K. T. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
    [CrossRef]
  16. K. Amarnath, R. Grover, S. Kanakaraju, and P. T. Ho, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17(11), 2280–2282 (2005).
    [CrossRef]
  17. B. T. Liou, M. W. Yen, M. L. Chen, Y. K. K. Kuo, and S.-H. Chang, “Numerical study for 1.55μm AlGaInAs/InP semiconductor lasers,” Proc. SPIE 6368, 636814 (2006).
    [CrossRef]
  18. I. Joindot and J. L. Beylat, “Intervalence band absorption coefficient measurements in bulk layer, strained and unstrained multiquantum well 1.55μm semiconductor lasers,” Electron. Lett. 29(7), 604–606 (1993).
    [CrossRef]
  19. W. Shi, and Z. Duan, R. Vafaei, N. Rouger, B. Faraji, and L. Chrostowski, “Simulation of a 1550 nm InGaAsP-InP transistor laser”, Proc. SPIE 7516, 75160P–1-75160P–7 (2009).
  20. W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
    [CrossRef]
  21. O. Ueda, K. Wakao, A. Yamaguchi, S. Isozumi, and S. Komiya, “Defect structures in rapidly degraded InGaAsP/InGaP double-heterostructure lasers,” J. Appl. Phys. 57(5), 1523 (1985).
    [CrossRef]

2009 (2)

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Quantum Electron. 15, 594–603 (2009).
[CrossRef]

M. Feng, N. Holonyak, H. W. Then, C. H. Wu, and G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
[CrossRef]

2008 (4)

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[CrossRef]

W. Shi, L. Chrosdowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical cavity surface emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[CrossRef]

Y. Huang, J.-H. Ryou, and R. D. Dupuis, “Control of Zn diffusion in InP/InAlGaAs-based heterojunction bipolar transistors and light emitting transistors,” J. Cryst. Growth 310(19), 4345–4350 (2008).
[CrossRef]

F. Dixon, M. Feng, N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[CrossRef]

2007 (1)

M. Feng, N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of the transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007).
[CrossRef]

2006 (2)

N. Holonyak and M. Feng, “The transistor laser,” IEEE Spectr. 43(2), 50–55 (2006).
[CrossRef]

B. T. Liou, M. W. Yen, M. L. Chen, Y. K. K. Kuo, and S.-H. Chang, “Numerical study for 1.55μm AlGaInAs/InP semiconductor lasers,” Proc. SPIE 6368, 636814 (2006).
[CrossRef]

2005 (2)

M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[CrossRef]

K. Amarnath, R. Grover, S. Kanakaraju, and P. T. Ho, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17(11), 2280–2282 (2005).
[CrossRef]

2000 (2)

A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000).
[CrossRef]

J. Piprek, P. Abraham, and J. E. Bowers, “Self-consistent analysis of high-temperature effects on strained-layer multiple quantum-well InGaAsP-InP lasers,” IEEE J. Quantum Electron. 36(3), 366–374 (2000).
[CrossRef]

1997 (1)

Z.-M. Li, “Physical models and numerical simulation of modern semiconductor lasers,” Proc. SPIE 2994, 698–708 (1997).
[CrossRef]

1996 (2)

G. R. Hadley, K. L. Lear, M. E. Warren, K. T. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[CrossRef]

P. Jian, D. G. Ivey, R. Bruce, and G. Knight, “Microstructural study of Au-Pd-Zn ohmic contacts to p-type InGaAsP-InP,” J. Mater. Sci. Mater. Electron. 7(2), 77–83 (1996).
[CrossRef]

1993 (1)

I. Joindot and J. L. Beylat, “Intervalence band absorption coefficient measurements in bulk layer, strained and unstrained multiquantum well 1.55μm semiconductor lasers,” Electron. Lett. 29(7), 604–606 (1993).
[CrossRef]

1990 (1)

A. Katz, P. M. Thomas, S. N. G. Chu, W. C. Dautremont-Smith, R. G. Sobers, and S. G. Napholtz, “Pt/Ti Ohmic contact to p++-InGaAsP (1.3μm) formed by rapid thermal processing,” J. Appl. Phys. 67(2), 884–889 (1990).
[CrossRef]

1985 (1)

O. Ueda, K. Wakao, A. Yamaguchi, S. Isozumi, and S. Komiya, “Defect structures in rapidly degraded InGaAsP/InGaP double-heterostructure lasers,” J. Appl. Phys. 57(5), 1523 (1985).
[CrossRef]

1981 (1)

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[CrossRef]

Abraham, P.

J. Piprek, P. Abraham, and J. E. Bowers, “Self-consistent analysis of high-temperature effects on strained-layer multiple quantum-well InGaAsP-InP lasers,” IEEE J. Quantum Electron. 36(3), 366–374 (2000).
[CrossRef]

Amarnath, K.

K. Amarnath, R. Grover, S. Kanakaraju, and P. T. Ho, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17(11), 2280–2282 (2005).
[CrossRef]

Asamizu, H.

A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000).
[CrossRef]

Bardeen, J.

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[CrossRef]

Beylat, J. L.

I. Joindot and J. L. Beylat, “Intervalence band absorption coefficient measurements in bulk layer, strained and unstrained multiquantum well 1.55μm semiconductor lasers,” Electron. Lett. 29(7), 604–606 (1993).
[CrossRef]

Bowers, J. E.

J. Piprek, P. Abraham, and J. E. Bowers, “Self-consistent analysis of high-temperature effects on strained-layer multiple quantum-well InGaAsP-InP lasers,” IEEE J. Quantum Electron. 36(3), 366–374 (2000).
[CrossRef]

Bruce, R.

P. Jian, D. G. Ivey, R. Bruce, and G. Knight, “Microstructural study of Au-Pd-Zn ohmic contacts to p-type InGaAsP-InP,” J. Mater. Sci. Mater. Electron. 7(2), 77–83 (1996).
[CrossRef]

Camras, M. D.

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[CrossRef]

Chan, R.

M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[CrossRef]

Chang, S.-H.

B. T. Liou, M. W. Yen, M. L. Chen, Y. K. K. Kuo, and S.-H. Chang, “Numerical study for 1.55μm AlGaInAs/InP semiconductor lasers,” Proc. SPIE 6368, 636814 (2006).
[CrossRef]

Chen, M. L.

B. T. Liou, M. W. Yen, M. L. Chen, Y. K. K. Kuo, and S.-H. Chang, “Numerical study for 1.55μm AlGaInAs/InP semiconductor lasers,” Proc. SPIE 6368, 636814 (2006).
[CrossRef]

Choquette, K. T.

G. R. Hadley, K. L. Lear, M. E. Warren, K. T. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[CrossRef]

Chrosdowski, L.

W. Shi, L. Chrosdowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical cavity surface emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[CrossRef]

Chrostowski, L.

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Quantum Electron. 15, 594–603 (2009).
[CrossRef]

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[CrossRef]

Chu, S. N. G.

A. Katz, P. M. Thomas, S. N. G. Chu, W. C. Dautremont-Smith, R. G. Sobers, and S. G. Napholtz, “Pt/Ti Ohmic contact to p++-InGaAsP (1.3μm) formed by rapid thermal processing,” J. Appl. Phys. 67(2), 884–889 (1990).
[CrossRef]

Coleman, J. J.

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[CrossRef]

Corzine, S. W.

G. R. Hadley, K. L. Lear, M. E. Warren, K. T. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[CrossRef]

Dapkus, P. D.

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[CrossRef]

Dautremont-Smith, W. C.

A. Katz, P. M. Thomas, S. N. G. Chu, W. C. Dautremont-Smith, R. G. Sobers, and S. G. Napholtz, “Pt/Ti Ohmic contact to p++-InGaAsP (1.3μm) formed by rapid thermal processing,” J. Appl. Phys. 67(2), 884–889 (1990).
[CrossRef]

Dixon, F.

F. Dixon, M. Feng, N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[CrossRef]

Dupuis, R. D.

F. Dixon, M. Feng, N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[CrossRef]

Y. Huang, J.-H. Ryou, and R. D. Dupuis, “Control of Zn diffusion in InP/InAlGaAs-based heterojunction bipolar transistors and light emitting transistors,” J. Cryst. Growth 310(19), 4345–4350 (2008).
[CrossRef]

Faraji, B.

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Quantum Electron. 15, 594–603 (2009).
[CrossRef]

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[CrossRef]

W. Shi, L. Chrosdowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical cavity surface emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[CrossRef]

Feng, M.

M. Feng, N. Holonyak, H. W. Then, C. H. Wu, and G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
[CrossRef]

F. Dixon, M. Feng, N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[CrossRef]

M. Feng, N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of the transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007).
[CrossRef]

N. Holonyak and M. Feng, “The transistor laser,” IEEE Spectr. 43(2), 50–55 (2006).
[CrossRef]

M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[CrossRef]

Grover, R.

K. Amarnath, R. Grover, S. Kanakaraju, and P. T. Ho, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17(11), 2280–2282 (2005).
[CrossRef]

Hadley, G. R.

G. R. Hadley, K. L. Lear, M. E. Warren, K. T. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[CrossRef]

Hess, K.

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[CrossRef]

Ho, P. T.

K. Amarnath, R. Grover, S. Kanakaraju, and P. T. Ho, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17(11), 2280–2282 (2005).
[CrossRef]

Holonyak, N.

M. Feng, N. Holonyak, H. W. Then, C. H. Wu, and G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
[CrossRef]

F. Dixon, M. Feng, N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[CrossRef]

M. Feng, N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of the transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007).
[CrossRef]

N. Holonyak and M. Feng, “The transistor laser,” IEEE Spectr. 43(2), 50–55 (2006).
[CrossRef]

M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[CrossRef]

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[CrossRef]

Huang, Y.

Y. Huang, J.-H. Ryou, and R. D. Dupuis, “Control of Zn diffusion in InP/InAlGaAs-based heterojunction bipolar transistors and light emitting transistors,” J. Cryst. Growth 310(19), 4345–4350 (2008).
[CrossRef]

F. Dixon, M. Feng, N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[CrossRef]

Iguchi, Y.

A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000).
[CrossRef]

Isozumi, S.

O. Ueda, K. Wakao, A. Yamaguchi, S. Isozumi, and S. Komiya, “Defect structures in rapidly degraded InGaAsP/InGaP double-heterostructure lasers,” J. Appl. Phys. 57(5), 1523 (1985).
[CrossRef]

Ivey, D. G.

P. Jian, D. G. Ivey, R. Bruce, and G. Knight, “Microstructural study of Au-Pd-Zn ohmic contacts to p-type InGaAsP-InP,” J. Mater. Sci. Mater. Electron. 7(2), 77–83 (1996).
[CrossRef]

Jian, P.

P. Jian, D. G. Ivey, R. Bruce, and G. Knight, “Microstructural study of Au-Pd-Zn ohmic contacts to p-type InGaAsP-InP,” J. Mater. Sci. Mater. Electron. 7(2), 77–83 (1996).
[CrossRef]

Joindot, I.

I. Joindot and J. L. Beylat, “Intervalence band absorption coefficient measurements in bulk layer, strained and unstrained multiquantum well 1.55μm semiconductor lasers,” Electron. Lett. 29(7), 604–606 (1993).
[CrossRef]

Kanakaraju, S.

K. Amarnath, R. Grover, S. Kanakaraju, and P. T. Ho, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17(11), 2280–2282 (2005).
[CrossRef]

Katz, A.

A. Katz, P. M. Thomas, S. N. G. Chu, W. C. Dautremont-Smith, R. G. Sobers, and S. G. Napholtz, “Pt/Ti Ohmic contact to p++-InGaAsP (1.3μm) formed by rapid thermal processing,” J. Appl. Phys. 67(2), 884–889 (1990).
[CrossRef]

Knight, G.

P. Jian, D. G. Ivey, R. Bruce, and G. Knight, “Microstructural study of Au-Pd-Zn ohmic contacts to p-type InGaAsP-InP,” J. Mater. Sci. Mater. Electron. 7(2), 77–83 (1996).
[CrossRef]

Koide, Y.

A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000).
[CrossRef]

Komiya, S.

O. Ueda, K. Wakao, A. Yamaguchi, S. Isozumi, and S. Komiya, “Defect structures in rapidly degraded InGaAsP/InGaP double-heterostructure lasers,” J. Appl. Phys. 57(5), 1523 (1985).
[CrossRef]

Kuo, Y. K. K.

B. T. Liou, M. W. Yen, M. L. Chen, Y. K. K. Kuo, and S.-H. Chang, “Numerical study for 1.55μm AlGaInAs/InP semiconductor lasers,” Proc. SPIE 6368, 636814 (2006).
[CrossRef]

Laidig, W. D.

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[CrossRef]

Lear, K. L.

G. R. Hadley, K. L. Lear, M. E. Warren, K. T. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[CrossRef]

Li, Z.-M.

Z.-M. Li, “Physical models and numerical simulation of modern semiconductor lasers,” Proc. SPIE 2994, 698–708 (1997).
[CrossRef]

Liou, B. T.

B. T. Liou, M. W. Yen, M. L. Chen, Y. K. K. Kuo, and S.-H. Chang, “Numerical study for 1.55μm AlGaInAs/InP semiconductor lasers,” Proc. SPIE 6368, 636814 (2006).
[CrossRef]

Murakami, M.

A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000).
[CrossRef]

Napholtz, S. G.

A. Katz, P. M. Thomas, S. N. G. Chu, W. C. Dautremont-Smith, R. G. Sobers, and S. G. Napholtz, “Pt/Ti Ohmic contact to p++-InGaAsP (1.3μm) formed by rapid thermal processing,” J. Appl. Phys. 67(2), 884–889 (1990).
[CrossRef]

Okada, T.

A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000).
[CrossRef]

Piprek, J.

J. Piprek, P. Abraham, and J. E. Bowers, “Self-consistent analysis of high-temperature effects on strained-layer multiple quantum-well InGaAsP-InP lasers,” IEEE J. Quantum Electron. 36(3), 366–374 (2000).
[CrossRef]

Pulfrey, D.

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Quantum Electron. 15, 594–603 (2009).
[CrossRef]

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[CrossRef]

Ryou, J. H.

F. Dixon, M. Feng, N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[CrossRef]

Ryou, J.-H.

Y. Huang, J.-H. Ryou, and R. D. Dupuis, “Control of Zn diffusion in InP/InAlGaAs-based heterojunction bipolar transistors and light emitting transistors,” J. Cryst. Growth 310(19), 4345–4350 (2008).
[CrossRef]

Saitoh, T.

A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000).
[CrossRef]

Scott, J. W.

G. R. Hadley, K. L. Lear, M. E. Warren, K. T. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[CrossRef]

Shi, W.

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Quantum Electron. 15, 594–603 (2009).
[CrossRef]

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[CrossRef]

W. Shi, L. Chrosdowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical cavity surface emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[CrossRef]

Sobers, R. G.

A. Katz, P. M. Thomas, S. N. G. Chu, W. C. Dautremont-Smith, R. G. Sobers, and S. G. Napholtz, “Pt/Ti Ohmic contact to p++-InGaAsP (1.3μm) formed by rapid thermal processing,” J. Appl. Phys. 67(2), 884–889 (1990).
[CrossRef]

Then, H. W.

M. Feng, N. Holonyak, H. W. Then, C. H. Wu, and G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
[CrossRef]

M. Feng, N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of the transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007).
[CrossRef]

Thomas, P. M.

A. Katz, P. M. Thomas, S. N. G. Chu, W. C. Dautremont-Smith, R. G. Sobers, and S. G. Napholtz, “Pt/Ti Ohmic contact to p++-InGaAsP (1.3μm) formed by rapid thermal processing,” J. Appl. Phys. 67(2), 884–889 (1990).
[CrossRef]

Ueda, O.

O. Ueda, K. Wakao, A. Yamaguchi, S. Isozumi, and S. Komiya, “Defect structures in rapidly degraded InGaAsP/InGaP double-heterostructure lasers,” J. Appl. Phys. 57(5), 1523 (1985).
[CrossRef]

Wakao, K.

O. Ueda, K. Wakao, A. Yamaguchi, S. Isozumi, and S. Komiya, “Defect structures in rapidly degraded InGaAsP/InGaP double-heterostructure lasers,” J. Appl. Phys. 57(5), 1523 (1985).
[CrossRef]

Walter, G.

M. Feng, N. Holonyak, H. W. Then, C. H. Wu, and G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
[CrossRef]

M. Feng, N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of the transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007).
[CrossRef]

M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[CrossRef]

Warren, M. E.

G. R. Hadley, K. L. Lear, M. E. Warren, K. T. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[CrossRef]

Wu, C. H.

M. Feng, N. Holonyak, H. W. Then, C. H. Wu, and G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
[CrossRef]

Yamaguchi, A.

A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000).
[CrossRef]

O. Ueda, K. Wakao, A. Yamaguchi, S. Isozumi, and S. Komiya, “Defect structures in rapidly degraded InGaAsP/InGaP double-heterostructure lasers,” J. Appl. Phys. 57(5), 1523 (1985).
[CrossRef]

Yen, M. W.

B. T. Liou, M. W. Yen, M. L. Chen, Y. K. K. Kuo, and S.-H. Chang, “Numerical study for 1.55μm AlGaInAs/InP semiconductor lasers,” Proc. SPIE 6368, 636814 (2006).
[CrossRef]

Zhang, X. B.

F. Dixon, M. Feng, N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[CrossRef]

Appl. Phys. Lett. (6)

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[CrossRef]

M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[CrossRef]

F. Dixon, M. Feng, N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[CrossRef]

M. Feng, N. Holonyak, H. W. Then, C. H. Wu, and G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
[CrossRef]

M. Feng, N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of the transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007).
[CrossRef]

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[CrossRef]

Electron. Lett. (1)

I. Joindot and J. L. Beylat, “Intervalence band absorption coefficient measurements in bulk layer, strained and unstrained multiquantum well 1.55μm semiconductor lasers,” Electron. Lett. 29(7), 604–606 (1993).
[CrossRef]

IEEE J. Quantum Electron. (3)

G. R. Hadley, K. L. Lear, M. E. Warren, K. T. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[CrossRef]

J. Piprek, P. Abraham, and J. E. Bowers, “Self-consistent analysis of high-temperature effects on strained-layer multiple quantum-well InGaAsP-InP lasers,” IEEE J. Quantum Electron. 36(3), 366–374 (2000).
[CrossRef]

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Quantum Electron. 15, 594–603 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

W. Shi, L. Chrosdowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical cavity surface emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[CrossRef]

K. Amarnath, R. Grover, S. Kanakaraju, and P. T. Ho, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17(11), 2280–2282 (2005).
[CrossRef]

IEEE Spectr. (1)

N. Holonyak and M. Feng, “The transistor laser,” IEEE Spectr. 43(2), 50–55 (2006).
[CrossRef]

J. Appl. Phys. (2)

A. Katz, P. M. Thomas, S. N. G. Chu, W. C. Dautremont-Smith, R. G. Sobers, and S. G. Napholtz, “Pt/Ti Ohmic contact to p++-InGaAsP (1.3μm) formed by rapid thermal processing,” J. Appl. Phys. 67(2), 884–889 (1990).
[CrossRef]

O. Ueda, K. Wakao, A. Yamaguchi, S. Isozumi, and S. Komiya, “Defect structures in rapidly degraded InGaAsP/InGaP double-heterostructure lasers,” J. Appl. Phys. 57(5), 1523 (1985).
[CrossRef]

J. Cryst. Growth (1)

Y. Huang, J.-H. Ryou, and R. D. Dupuis, “Control of Zn diffusion in InP/InAlGaAs-based heterojunction bipolar transistors and light emitting transistors,” J. Cryst. Growth 310(19), 4345–4350 (2008).
[CrossRef]

J. Mater. Sci. Mater. Electron. (1)

P. Jian, D. G. Ivey, R. Bruce, and G. Knight, “Microstructural study of Au-Pd-Zn ohmic contacts to p-type InGaAsP-InP,” J. Mater. Sci. Mater. Electron. 7(2), 77–83 (1996).
[CrossRef]

J. Vac. Sci. Technol. B (1)

A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000).
[CrossRef]

Proc. SPIE (2)

Z.-M. Li, “Physical models and numerical simulation of modern semiconductor lasers,” Proc. SPIE 2994, 698–708 (1997).
[CrossRef]

B. T. Liou, M. W. Yen, M. L. Chen, Y. K. K. Kuo, and S.-H. Chang, “Numerical study for 1.55μm AlGaInAs/InP semiconductor lasers,” Proc. SPIE 6368, 636814 (2006).
[CrossRef]

Other (1)

W. Shi, and Z. Duan, R. Vafaei, N. Rouger, B. Faraji, and L. Chrostowski, “Simulation of a 1550 nm InGaAsP-InP transistor laser”, Proc. SPIE 7516, 75160P–1-75160P–7 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simulated and experimental L-I-V curves of a ridge-waveguide laser diode. The ridge waveguide is 2 μm wide, 1.8 μm high, and 250 μm long. The reflectivities of the front and back facts are 90% and 30%, respectively. The laser was mounted on a thermal sink and tested at 25°C.

Fig. 2
Fig. 2

The bias configuration and optical mode of the TL. The structure is symmetric in the x-axis mirrored at x=0. Only half is shown. The center of the contours is in the QWs, including a strong overlap between the optical mode and the active region.

Fig. 3
Fig. 3

Simulated electrical and optical characteristics of the TL: (a) collector current (IC) as a function of the collector-emitter voltage (VCE) for varied base current (IB); (b) Optical output power as a function of IB for varied VCE.

Fig. 4
Fig. 4

Simulated optical output power as a function of the emitter-collector voltage VCE for varied base current IB.

Fig. 5
Fig. 5

PL spectrum: (a) before growing the emitter and (b) after the complete growth.

Fig. 6
Fig. 6

X-ray diffraction spectrum: (a) before growing the emitter and (b) after the complete growth.

Tables (2)

Tables Icon

Table 1 The proposed epitaxial structure for a 1.55 μm TL

Tables Icon

Table 2 The epitaxial structure of a conventional 1.55 μm ridge-waveguide laser diode.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R a u g = ( C n n C p p ) × ( n p n i 2 )

Metrics