Abstract

We developed an adaptive optics (AO) retinal scanner by using a light source with a center wavelength of 1-μm. In a recent study on optical coherence tomography (OCT), it was proved that 1-μm light provided higher image contrast of deep region of the eye than 840-nm light. Further, high lateral resolution retinal images were obtained with AO. In this study, we performed measurements on two normal subjects in the AO-SLO mode and analyzed its performance toward developing the AO-OCT. With AO correction, we found that the residual RMS wavefront error of ocular aberration was less than 0.1 μm. We also found that the AO retinal scanner in the AO-SLO mode enabled enhanced observation of photoreceptor mosaic.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997).
    [CrossRef]
  2. A. Roorda, F. Romero-Borja, W. Donnelly, III, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
    [PubMed]
  3. S. A. Burns, R. Tumber, A. E. Elsner, D. Ferguson, and D. X. Hammer, "Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope," J. Opt. Soc. Am. A 24, 1313-1326 (2007).
    [CrossRef]
  4. D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Oliver, "High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirror," J. Opt. Soc. Am. A 24, 1305-1312 (2007).
    [CrossRef]
  5. M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, "Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography," Opt. Lett. 33, 22-24 (2008).
    [CrossRef]
  6. R. H. Webb, G. W. Hughes, and F. C. Delori, "Confocal scanning laser ophthalmoscope," Appl. Opt. 26, 1492-1499 (1987).
    [CrossRef] [PubMed]
  7. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, "Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging," Opt. Express 14, 3354-3367 (2006).
    [CrossRef] [PubMed]
  8. B. Hermann, E. J. Fernandez, A. Unterhuder, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, " Adaptiveoptics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
    [CrossRef] [PubMed]
  9. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Opt. Express 16, 8126-8143 (2008).
    [CrossRef] [PubMed]
  10. E. J. Fernandez, B. Hermann, B. Povazay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh-resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt. Express 16, 11083-11094 (2008).
    [CrossRef] [PubMed]
  11. B. Povazay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, "Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography," Opt. Express 17, 4134-4150 (2009).
    [CrossRef] [PubMed]
  12. Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, and R. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003).
    [CrossRef] [PubMed]
  13. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005).
    [CrossRef] [PubMed]
  14. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
    [CrossRef] [PubMed]
  15. B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and Wolfgang Drexler, "3D optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
    [CrossRef] [PubMed]
  16. S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008).
    [CrossRef] [PubMed]
  17. D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "Invivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07-1553 (2008).
    [CrossRef] [PubMed]
  18. Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by highpenetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009).
    [CrossRef]
  19. B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009).
    [CrossRef]
  20. F. C. Delori and K. P. Pflibsen, "Spectral reflectance of the human ocular fundus," App. Opt. 28, 1061-1077 (1989).
    [CrossRef]
  21. M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995).
    [CrossRef] [PubMed]
  22. A. E. Elsner, S. A. Burns, J. J. Weiter and F. C. Delori, "Infrared imaging of sub-retinal structures in the human ocular fundus," Vision Res. 36, 191-205 (1996).
    [CrossRef] [PubMed]
  23. G. M. Hale and M. R. Querry, "Optical constants of water in the 200-nm to 200-textmum wavelength region," Appl. Opt. 12, 555-563 (1973).
    [CrossRef] [PubMed]
  24. P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990).
    [CrossRef]
  25. E. J. Fernandez, A. Unterhuber, P. Prietro, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
    [CrossRef] [PubMed]
  26. D. A. Atchison and G. Smith, "Chromatic dispersions of the ocular media of human eyes," J. Opt. Soc. Am. A 22, 29-37 (2005).
    [CrossRef]
  27. E. J. Fernandez, A. Unterhuber, B. Povazay, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006).
    [CrossRef] [PubMed]
  28. K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, "Multi-wavelength imaging with the adaptive optics scanning laser ophthalmoscope," Opt. Express 14, 12230-12242 (2006).
    [CrossRef] [PubMed]
  29. E. J. Fernandez and P. Artal, "Ocular aberrations up to the infrared range: from 632.8 to 1070 nm," Opt. Express 16, 21199-21208 (2008).
    [CrossRef] [PubMed]
  30. A. Roorda and D. R. Williams, "Optical fiber properties of individual human cones," J. Vision 2, 404-412 (2002).
    [CrossRef]
  31. A. Pallikaris, D. R. Williams, and H. Hofer, "The reflectance of single cones in the living human eye," Invest. Ophthalmol. Vis. Sci. 44, 4580-4592 (2003).
    [CrossRef] [PubMed]
  32. B. Vohnsen, I. Iglesias, and P. Artal, "Guided light and diffraction model of human-eye photoreceptors," J. Opt. Soc. Am. A 22, 2318-2328 (2005).
    [CrossRef]
  33. S. S. Choi, N. Doble, J. Lin, J. Christou, and D. R. Williams, "Effect of wavelength on in vivo images of the human cone mosaic," J. Opt. Soc. Am. A 22, 2598-2605 (2005).
    [CrossRef]
  34. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, "In vivo functional imaging of human cone photoreceptors," Opt. Express 15, 16141-16160 (2007).
    [CrossRef] [PubMed]
  35. W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, "Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography," Opt. Express 16, 6486-6501 (2008).
    [CrossRef] [PubMed]
  36. D. T. Miller, L. N. Thibos, and X. Hong, "Requirements for segmented correctors for diffraction-limited performance in the human eye," Opt. Express 13, 275-289 (2005).
    [CrossRef] [PubMed]
  37. American National Standard Institute, American National Standard f or the Sa f eUse o f Lasers ANSI Z 136.1−2000 (American National Standards Institute, New York, 2000).
  38. F. C. Delori, R. H. Webb, and D. H. Sliney, "Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices," J. Opt. Soc. Am. A 24, 1250-1265 (2007).
    [CrossRef]
  39. L. Xu, J. Li, T. Cui, A. Hu, G. Fan, R. Zhang, H. Yang, B. Sun, and J. B. Jonas, "Refractive error in urban and rural adult chinese in Beijing," Ophthalmology 112 (10), 1676-1683 (2005).
    [CrossRef]
  40. A. Sawada, A. Tomidokoro, M. Araie, A. Iwase, T. Yamamoto, and Tajimi study Group, "Refractive errors in an elderly Japanese population: the Tajimi study," Ophthalmology 115 (2), 363-370 (2008).
    [CrossRef]
  41. J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics (SPIE-International Society for Optical Engineering, 2004).
    [CrossRef]
  42. E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, P. Artal, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006).
    [CrossRef] [PubMed]
  43. N. Devaney, E. Dalimier, T. Farrell, D. Coburn, R. Mackey, D. Mackey, F. Laurent, E. Daly, and C. Dainty, "Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors," J. Opt. Soc. Am. A 24, 1250-1265 (2007).
  44. R. H. Webb and G. W. Hughes, "Scanning Laser Ophthalmoscope," IEEE Trans. Biomed. Eng. 28(7), 488-492 (1981).
    [CrossRef] [PubMed]
  45. R. H. Webb, "Optics for laser rasters," Appl. Opt. 23, 3680-3683 (1984).
    [CrossRef] [PubMed]
  46. Webb, R. H. , G. W. Hughes, and F. C. Delori, "Confocal scanning laser ophthalmoscope," Appl. Opt. 26, 1492-1499 (1987).
    [CrossRef] [PubMed]
  47. A. E. Elsner, S. A. Burns, G. W. Hughes, and R. H. Webb, "Reflectometry with a Scanning Laser Ophthalmoscope," Appl. Opt. 31, 3697-3710 (1992).
    [CrossRef] [PubMed]
  48. H. Foroosh, J. B. Zerubia, and M. Berthod, "Extension of phase correlation to subpixel registration," IEEE Trans Image Process 11(3), 188-200 (2002).
    [CrossRef]
  49. J. C. Wyant and K. Creath, "Basic wavefront aberration theory for optical metrology," in Applied Optics and Optical Engineering, Vol. XI, R. R. Shannon and J. C. Wyant, eds. (Academic Press, 1992), 1-53.
  50. T. Wilson and A. R. Carlini, "Size of the detector in confocal imaging systems," Opt. Lett. 12, 227-229 (1987).
    [CrossRef] [PubMed]
  51. R. H. Webb, "Confocal optical microscopy," Reports on Progress in Physics 59(3), 427-471 (1996).
    [CrossRef]
  52. Y. Zhang and A. Roorda, "Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 11, 014002(1)-014002(5) (2006).
  53. C. A. Curcio, K. R. Sloan, Jr., O. Packer, A. E. Hendrickson, and R. E. Kalina, "Distribution of cones in human and monkey retina: individual variability and radial asymmetry," Science 236, 579-582 (1987).
    [CrossRef] [PubMed]
  54. K. Kurokawa, K. Sasaki, S. Makita and Y. Yasuno, "Adaptive optics spectral domain optical coherence tomography with one-micrometer light source," Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XIV, Proc. SPIE, in press.

2009

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by highpenetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009).
[CrossRef]

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009).
[CrossRef]

B. Povazay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, "Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography," Opt. Express 17, 4134-4150 (2009).
[CrossRef] [PubMed]

2008

M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, "Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography," Opt. Lett. 33, 22-24 (2008).
[CrossRef]

W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, "Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography," Opt. Express 16, 6486-6501 (2008).
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Opt. Express 16, 8126-8143 (2008).
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008).
[CrossRef] [PubMed]

E. J. Fernandez, B. Hermann, B. Povazay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh-resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt. Express 16, 11083-11094 (2008).
[CrossRef] [PubMed]

E. J. Fernandez and P. Artal, "Ocular aberrations up to the infrared range: from 632.8 to 1070 nm," Opt. Express 16, 21199-21208 (2008).
[CrossRef] [PubMed]

A. Sawada, A. Tomidokoro, M. Araie, A. Iwase, T. Yamamoto, and Tajimi study Group, "Refractive errors in an elderly Japanese population: the Tajimi study," Ophthalmology 115 (2), 363-370 (2008).
[CrossRef]

2007

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and Wolfgang Drexler, "3D optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

N. Devaney, E. Dalimier, T. Farrell, D. Coburn, R. Mackey, D. Mackey, F. Laurent, E. Daly, and C. Dainty, "Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors," J. Opt. Soc. Am. A 24, 1250-1265 (2007).

F. C. Delori, R. H. Webb, and D. H. Sliney, "Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices," J. Opt. Soc. Am. A 24, 1250-1265 (2007).
[CrossRef]

D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Oliver, "High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirror," J. Opt. Soc. Am. A 24, 1305-1312 (2007).
[CrossRef]

S. A. Burns, R. Tumber, A. E. Elsner, D. Ferguson, and D. X. Hammer, "Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope," J. Opt. Soc. Am. A 24, 1313-1326 (2007).
[CrossRef]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
[CrossRef] [PubMed]

R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, "In vivo functional imaging of human cone photoreceptors," Opt. Express 15, 16141-16160 (2007).
[CrossRef] [PubMed]

2006

2005

2004

2003

A. Pallikaris, D. R. Williams, and H. Hofer, "The reflectance of single cones in the living human eye," Invest. Ophthalmol. Vis. Sci. 44, 4580-4592 (2003).
[CrossRef] [PubMed]

Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, and R. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003).
[CrossRef] [PubMed]

2002

A. Roorda, F. Romero-Borja, W. Donnelly, III, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
[PubMed]

A. Roorda and D. R. Williams, "Optical fiber properties of individual human cones," J. Vision 2, 404-412 (2002).
[CrossRef]

H. Foroosh, J. B. Zerubia, and M. Berthod, "Extension of phase correlation to subpixel registration," IEEE Trans Image Process 11(3), 188-200 (2002).
[CrossRef]

1997

1996

R. H. Webb, "Confocal optical microscopy," Reports on Progress in Physics 59(3), 427-471 (1996).
[CrossRef]

A. E. Elsner, S. A. Burns, J. J. Weiter and F. C. Delori, "Infrared imaging of sub-retinal structures in the human ocular fundus," Vision Res. 36, 191-205 (1996).
[CrossRef] [PubMed]

1995

M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995).
[CrossRef] [PubMed]

1992

1990

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

1989

F. C. Delori and K. P. Pflibsen, "Spectral reflectance of the human ocular fundus," App. Opt. 28, 1061-1077 (1989).
[CrossRef]

1987

1984

1981

R. H. Webb and G. W. Hughes, "Scanning Laser Ophthalmoscope," IEEE Trans. Biomed. Eng. 28(7), 488-492 (1981).
[CrossRef] [PubMed]

1973

Ahnelt, P. K.

Akiba, M.

Araie, M.

A. Sawada, A. Tomidokoro, M. Araie, A. Iwase, T. Yamamoto, and Tajimi study Group, "Refractive errors in an elderly Japanese population: the Tajimi study," Ophthalmology 115 (2), 363-370 (2008).
[CrossRef]

Artal, P.

Atchison, D. A.

Berthod, M.

H. Foroosh, J. B. Zerubia, and M. Berthod, "Extension of phase correlation to subpixel registration," IEEE Trans Image Process 11(3), 188-200 (2002).
[CrossRef]

Bigelow, C. E.

Bird, A. C.

Blinder, S.

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and Wolfgang Drexler, "3D optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

Burns, S. A.

Campbell, M. C. W.

Carlini, A. R.

Cense, B.

Chavez-Pirson, A.

Chen, D. C.

Chen, Z.

Choi, S. S.

Christou, J.

Chuck, R.

Coburn, D.

Cui, T.

L. Xu, J. Li, T. Cui, A. Hu, G. Fan, R. Zhang, H. Yang, B. Sun, and J. B. Jonas, "Refractive error in urban and rural adult chinese in Beijing," Ophthalmology 112 (10), 1676-1683 (2005).
[CrossRef]

Curcio, C. A.

C. A. Curcio, K. R. Sloan, Jr., O. Packer, A. E. Hendrickson, and R. E. Kalina, "Distribution of cones in human and monkey retina: individual variability and radial asymmetry," Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Dainty, C.

Dalimier, E.

Daly, E.

Delori, F. C.

Devaney, N.

Doble, N.

Donnelly, W.

Drexler, W.

B. Povazay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, "Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography," Opt. Express 17, 4134-4150 (2009).
[CrossRef] [PubMed]

E. J. Fernandez, B. Hermann, B. Povazay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh-resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt. Express 16, 11083-11094 (2008).
[CrossRef] [PubMed]

E. J. Fernandez, A. Unterhuber, B. Povazay, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006).
[CrossRef] [PubMed]

E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, P. Artal, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006).
[CrossRef] [PubMed]

E. J. Fernandez, A. Unterhuber, P. Prietro, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernandez, A. Unterhuder, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, " Adaptiveoptics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

Egan, C. A.

Elsner, A. E.

Esmaeelpour, M.

Evans, J. W.

Fabritius, T.

Falkner-Radler, C.

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and Wolfgang Drexler, "3D optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

Fan, G.

L. Xu, J. Li, T. Cui, A. Hu, G. Fan, R. Zhang, H. Yang, B. Sun, and J. B. Jonas, "Refractive error in urban and rural adult chinese in Beijing," Ophthalmology 112 (10), 1676-1683 (2005).
[CrossRef]

Farrell, T.

Fercher, A. F.

Ferguson, D.

Ferguson, R. D.

Fern’andez, E. J.

Fernandez, E. J.

Foroosh, H.

H. Foroosh, J. B. Zerubia, and M. Berthod, "Extension of phase correlation to subpixel registration," IEEE Trans Image Process 11(3), 188-200 (2002).
[CrossRef]

Gallagher, J. S.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Gao, W.

Glittenberg, C.

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and Wolfgang Drexler, "3D optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

Grieve, K.

Hale, G. M.

Hammer, D. X.

Hammer, M.

M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995).
[CrossRef] [PubMed]

Hebert, T. J.

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, Jr., O. Packer, A. E. Hendrickson, and R. E. Kalina, "Distribution of cones in human and monkey retina: individual variability and radial asymmetry," Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Hermann, B.

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009).
[CrossRef]

B. Povazay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, "Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography," Opt. Express 17, 4134-4150 (2009).
[CrossRef] [PubMed]

E. J. Fernandez, B. Hermann, B. Povazay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh-resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt. Express 16, 11083-11094 (2008).
[CrossRef] [PubMed]

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and Wolfgang Drexler, "3D optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, P. Artal, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006).
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005).
[CrossRef] [PubMed]

E. J. Fernandez, A. Unterhuber, P. Prietro, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernandez, A. Unterhuder, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, " Adaptiveoptics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Hofer, B.

B. Povazay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, "Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography," Opt. Express 17, 4134-4150 (2009).
[CrossRef] [PubMed]

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009).
[CrossRef]

E. J. Fernandez, B. Hermann, B. Povazay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh-resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt. Express 16, 11083-11094 (2008).
[CrossRef] [PubMed]

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and Wolfgang Drexler, "3D optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

Hofer, H.

A. Pallikaris, D. R. Williams, and H. Hofer, "The reflectance of single cones in the living human eye," Invest. Ophthalmol. Vis. Sci. 44, 4580-4592 (2003).
[CrossRef] [PubMed]

Hong, X.

Hong, Y.

Hu, A.

L. Xu, J. Li, T. Cui, A. Hu, G. Fan, R. Zhang, H. Yang, B. Sun, and J. B. Jonas, "Refractive error in urban and rural adult chinese in Beijing," Ophthalmology 112 (10), 1676-1683 (2005).
[CrossRef]

Hughes, G. W.

Iftimia, N. V.

Iglesias, I.

Iwasaki, T.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by highpenetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009).
[CrossRef]

Iwase, A.

A. Sawada, A. Tomidokoro, M. Araie, A. Iwase, T. Yamamoto, and Tajimi study Group, "Refractive errors in an elderly Japanese population: the Tajimi study," Ophthalmology 115 (2), 363-370 (2008).
[CrossRef]

Jonas, J. B.

L. Xu, J. Li, T. Cui, A. Hu, G. Fan, R. Zhang, H. Yang, B. Sun, and J. B. Jonas, "Refractive error in urban and rural adult chinese in Beijing," Ophthalmology 112 (10), 1676-1683 (2005).
[CrossRef]

Jones, S. M.

Jonnal, R. S.

Kalina, R. E.

C. A. Curcio, K. R. Sloan, Jr., O. Packer, A. E. Hendrickson, and R. E. Kalina, "Distribution of cones in human and monkey retina: individual variability and radial asymmetry," Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Kawana, K.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by highpenetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009).
[CrossRef]

Kurokawa, K.

K. Kurokawa, K. Sasaki, S. Makita and Y. Yasuno, "Adaptive optics spectral domain optical coherence tomography with one-micrometer light source," Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XIV, Proc. SPIE, in press.

Laurent, F.

Levelt Sengers, J. M. H.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Li, J.

L. Xu, J. Li, T. Cui, A. Hu, G. Fan, R. Zhang, H. Yang, B. Sun, and J. B. Jonas, "Refractive error in urban and rural adult chinese in Beijing," Ophthalmology 112 (10), 1676-1683 (2005).
[CrossRef]

Liang, J.

Lin, J.

Mackey, D.

Mackey, R.

Makita, S.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by highpenetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009).
[CrossRef]

S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
[CrossRef] [PubMed]

K. Kurokawa, K. Sasaki, S. Makita and Y. Yasuno, "Adaptive optics spectral domain optical coherence tomography with one-micrometer light source," Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XIV, Proc. SPIE, in press.

Miller, D. T.

Miura, M.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by highpenetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009).
[CrossRef]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
[CrossRef] [PubMed]

Morgan, J. E.

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and Wolfgang Drexler, "3D optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

Muller, G.

M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995).
[CrossRef] [PubMed]

Nelson, J.

Okamoto, F.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by highpenetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009).
[CrossRef]

Oliver, S. S.

Oshika, T.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by highpenetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009).
[CrossRef]

Packer, O.

C. A. Curcio, K. R. Sloan, Jr., O. Packer, A. E. Hendrickson, and R. E. Kalina, "Distribution of cones in human and monkey retina: individual variability and radial asymmetry," Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Pallikaris, A.

A. Pallikaris, D. R. Williams, and H. Hofer, "The reflectance of single cones in the living human eye," Invest. Ophthalmol. Vis. Sci. 44, 4580-4592 (2003).
[CrossRef] [PubMed]

Pflibsen, K. P.

F. C. Delori and K. P. Pflibsen, "Spectral reflectance of the human ocular fundus," App. Opt. 28, 1061-1077 (1989).
[CrossRef]

Pircher, M.

Pova’zay, B.

Povazay, B.

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009).
[CrossRef]

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and Wolfgang Drexler, "3D optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, P. Artal, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006).
[CrossRef] [PubMed]

Prieto, P. M.

Prietro, P.

Queener, H.

Querry, M. R.

Reiser, B.

Rha, J.

Roggan, A.

M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995).
[CrossRef] [PubMed]

Romero-Borja, F.

Roorda, A.

Sasaki, K.

K. Kurokawa, K. Sasaki, S. Makita and Y. Yasuno, "Adaptive optics spectral domain optical coherence tomography with one-micrometer light source," Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XIV, Proc. SPIE, in press.

Sato, M.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by highpenetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009).
[CrossRef]

Sattmann, H.

Sawada, A.

A. Sawada, A. Tomidokoro, M. Araie, A. Iwase, T. Yamamoto, and Tajimi study Group, "Refractive errors in an elderly Japanese population: the Tajimi study," Ophthalmology 115 (2), 363-370 (2008).
[CrossRef]

Schiebener, P.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Schweitzer, D.

M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995).
[CrossRef] [PubMed]

Silva, D. A.

Sliney, D. H.

Sloan, K. R.

C. A. Curcio, K. R. Sloan, Jr., O. Packer, A. E. Hendrickson, and R. E. Kalina, "Distribution of cones in human and monkey retina: individual variability and radial asymmetry," Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Smith, G.

Straub, J.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Sun, B.

L. Xu, J. Li, T. Cui, A. Hu, G. Fan, R. Zhang, H. Yang, B. Sun, and J. B. Jonas, "Refractive error in urban and rural adult chinese in Beijing," Ophthalmology 112 (10), 1676-1683 (2005).
[CrossRef]

Thibos, L. N.

Tiruveedhula, P.

Tomidokoro, A.

A. Sawada, A. Tomidokoro, M. Araie, A. Iwase, T. Yamamoto, and Tajimi study Group, "Refractive errors in an elderly Japanese population: the Tajimi study," Ophthalmology 115 (2), 363-370 (2008).
[CrossRef]

Torti, C.

Tumber, R.

Tumlinson, A. R.

Unterhuber, A.

E. J. Fernandez, B. Hermann, B. Povazay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh-resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt. Express 16, 11083-11094 (2008).
[CrossRef] [PubMed]

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and Wolfgang Drexler, "3D optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, P. Artal, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006).
[CrossRef] [PubMed]

E. J. Fernandez, A. Unterhuber, B. Povazay, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006).
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005).
[CrossRef] [PubMed]

E. J. Fernandez, A. Unterhuber, P. Prietro, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
[CrossRef] [PubMed]

Unterhuder, A.

Ustun, T. E.

Vabre, L.

Vohnsen, B.

Wang, Y.

Webb,

Webb, R. H.

Weiter, J. J.

A. E. Elsner, S. A. Burns, J. J. Weiter and F. C. Delori, "Infrared imaging of sub-retinal structures in the human ocular fundus," Vision Res. 36, 191-205 (1996).
[CrossRef] [PubMed]

Werner, J. S.

Williams, D. R.

S. S. Choi, N. Doble, J. Lin, J. Christou, and D. R. Williams, "Effect of wavelength on in vivo images of the human cone mosaic," J. Opt. Soc. Am. A 22, 2598-2605 (2005).
[CrossRef]

A. Pallikaris, D. R. Williams, and H. Hofer, "The reflectance of single cones in the living human eye," Invest. Ophthalmol. Vis. Sci. 44, 4580-4592 (2003).
[CrossRef] [PubMed]

A. Roorda and D. R. Williams, "Optical fiber properties of individual human cones," J. Vision 2, 404-412 (2002).
[CrossRef]

J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997).
[CrossRef]

Wilson, T.

Windeler, R.

Xu, L.

L. Xu, J. Li, T. Cui, A. Hu, G. Fan, R. Zhang, H. Yang, B. Sun, and J. B. Jonas, "Refractive error in urban and rural adult chinese in Beijing," Ophthalmology 112 (10), 1676-1683 (2005).
[CrossRef]

Yamamoto, T.

A. Sawada, A. Tomidokoro, M. Araie, A. Iwase, T. Yamamoto, and Tajimi study Group, "Refractive errors in an elderly Japanese population: the Tajimi study," Ophthalmology 115 (2), 363-370 (2008).
[CrossRef]

Yamanari, M.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by highpenetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009).
[CrossRef]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
[CrossRef] [PubMed]

Yang, H.

L. Xu, J. Li, T. Cui, A. Hu, G. Fan, R. Zhang, H. Yang, B. Sun, and J. B. Jonas, "Refractive error in urban and rural adult chinese in Beijing," Ophthalmology 112 (10), 1676-1683 (2005).
[CrossRef]

Yasuno, Y.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by highpenetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009).
[CrossRef]

S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
[CrossRef] [PubMed]

K. Kurokawa, K. Sasaki, S. Makita and Y. Yasuno, "Adaptive optics spectral domain optical coherence tomography with one-micrometer light source," Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XIV, Proc. SPIE, in press.

Yatagai, T.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by highpenetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009).
[CrossRef]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
[CrossRef] [PubMed]

Zawadzki, R. J.

Zeiler, F.

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and Wolfgang Drexler, "3D optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

Zerubia, J. B.

H. Foroosh, J. B. Zerubia, and M. Berthod, "Extension of phase correlation to subpixel registration," IEEE Trans Image Process 11(3), 188-200 (2002).
[CrossRef]

Zhang, R.

L. Xu, J. Li, T. Cui, A. Hu, G. Fan, R. Zhang, H. Yang, B. Sun, and J. B. Jonas, "Refractive error in urban and rural adult chinese in Beijing," Ophthalmology 112 (10), 1676-1683 (2005).
[CrossRef]

Zhang, Y.

App. Opt.

F. C. Delori and K. P. Pflibsen, "Spectral reflectance of the human ocular fundus," App. Opt. 28, 1061-1077 (1989).
[CrossRef]

Appl. Opt.

IEEE Trans Image Process

H. Foroosh, J. B. Zerubia, and M. Berthod, "Extension of phase correlation to subpixel registration," IEEE Trans Image Process 11(3), 188-200 (2002).
[CrossRef]

IEEE Trans. Biomed. Eng.

R. H. Webb and G. W. Hughes, "Scanning Laser Ophthalmoscope," IEEE Trans. Biomed. Eng. 28(7), 488-492 (1981).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by highpenetration optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 50, 405-413 (2009).
[CrossRef]

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009).
[CrossRef]

A. Pallikaris, D. R. Williams, and H. Hofer, "The reflectance of single cones in the living human eye," Invest. Ophthalmol. Vis. Sci. 44, 4580-4592 (2003).
[CrossRef] [PubMed]

J. Biomed. Opt.

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and Wolfgang Drexler, "3D optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997).
[CrossRef]

D. A. Atchison and G. Smith, "Chromatic dispersions of the ocular media of human eyes," J. Opt. Soc. Am. A 22, 29-37 (2005).
[CrossRef]

B. Vohnsen, I. Iglesias, and P. Artal, "Guided light and diffraction model of human-eye photoreceptors," J. Opt. Soc. Am. A 22, 2318-2328 (2005).
[CrossRef]

S. S. Choi, N. Doble, J. Lin, J. Christou, and D. R. Williams, "Effect of wavelength on in vivo images of the human cone mosaic," J. Opt. Soc. Am. A 22, 2598-2605 (2005).
[CrossRef]

N. Devaney, E. Dalimier, T. Farrell, D. Coburn, R. Mackey, D. Mackey, F. Laurent, E. Daly, and C. Dainty, "Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors," J. Opt. Soc. Am. A 24, 1250-1265 (2007).

F. C. Delori, R. H. Webb, and D. H. Sliney, "Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices," J. Opt. Soc. Am. A 24, 1250-1265 (2007).
[CrossRef]

D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Oliver, "High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirror," J. Opt. Soc. Am. A 24, 1305-1312 (2007).
[CrossRef]

S. A. Burns, R. Tumber, A. E. Elsner, D. Ferguson, and D. X. Hammer, "Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope," J. Opt. Soc. Am. A 24, 1313-1326 (2007).
[CrossRef]

J. Phys. Chem. Ref. Data

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength, temperature and density," J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

J. Vision

A. Roorda and D. R. Williams, "Optical fiber properties of individual human cones," J. Vision 2, 404-412 (2002).
[CrossRef]

Ophthalmology

L. Xu, J. Li, T. Cui, A. Hu, G. Fan, R. Zhang, H. Yang, B. Sun, and J. B. Jonas, "Refractive error in urban and rural adult chinese in Beijing," Ophthalmology 112 (10), 1676-1683 (2005).
[CrossRef]

A. Sawada, A. Tomidokoro, M. Araie, A. Iwase, T. Yamamoto, and Tajimi study Group, "Refractive errors in an elderly Japanese population: the Tajimi study," Ophthalmology 115 (2), 363-370 (2008).
[CrossRef]

Opt. Express

D. T. Miller, L. N. Thibos, and X. Hong, "Requirements for segmented correctors for diffraction-limited performance in the human eye," Opt. Express 13, 275-289 (2005).
[CrossRef] [PubMed]

E. J. Fernandez, A. Unterhuber, P. Prietro, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly, III, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
[PubMed]

Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, and R. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
[CrossRef] [PubMed]

R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, "In vivo functional imaging of human cone photoreceptors," Opt. Express 15, 16141-16160 (2007).
[CrossRef] [PubMed]

D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, "Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging," Opt. Express 14, 3354-3367 (2006).
[CrossRef] [PubMed]

E. J. Fernandez, A. Unterhuber, B. Povazay, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006).
[CrossRef] [PubMed]

E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, P. Artal, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006).
[CrossRef] [PubMed]

K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, "Multi-wavelength imaging with the adaptive optics scanning laser ophthalmoscope," Opt. Express 14, 12230-12242 (2006).
[CrossRef] [PubMed]

W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, "Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography," Opt. Express 16, 6486-6501 (2008).
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Opt. Express 16, 8126-8143 (2008).
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008).
[CrossRef] [PubMed]

E. J. Fernandez, B. Hermann, B. Povazay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh-resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt. Express 16, 11083-11094 (2008).
[CrossRef] [PubMed]

E. J. Fernandez and P. Artal, "Ocular aberrations up to the infrared range: from 632.8 to 1070 nm," Opt. Express 16, 21199-21208 (2008).
[CrossRef] [PubMed]

B. Povazay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, "Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography," Opt. Express 17, 4134-4150 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995).
[CrossRef] [PubMed]

Proc. SPIE

K. Kurokawa, K. Sasaki, S. Makita and Y. Yasuno, "Adaptive optics spectral domain optical coherence tomography with one-micrometer light source," Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XIV, Proc. SPIE, in press.

Reports on Progress in Physics

R. H. Webb, "Confocal optical microscopy," Reports on Progress in Physics 59(3), 427-471 (1996).
[CrossRef]

Science

C. A. Curcio, K. R. Sloan, Jr., O. Packer, A. E. Hendrickson, and R. E. Kalina, "Distribution of cones in human and monkey retina: individual variability and radial asymmetry," Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Vision Res.

A. E. Elsner, S. A. Burns, J. J. Weiter and F. C. Delori, "Infrared imaging of sub-retinal structures in the human ocular fundus," Vision Res. 36, 191-205 (1996).
[CrossRef] [PubMed]

Other

J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics (SPIE-International Society for Optical Engineering, 2004).
[CrossRef]

American National Standard Institute, American National Standard f or the Sa f eUse o f Lasers ANSI Z 136.1−2000 (American National Standards Institute, New York, 2000).

Y. Zhang and A. Roorda, "Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 11, 014002(1)-014002(5) (2006).

J. C. Wyant and K. Creath, "Basic wavefront aberration theory for optical metrology," in Applied Optics and Optical Engineering, Vol. XI, R. R. Shannon and J. C. Wyant, eds. (Academic Press, 1992), 1-53.

D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "Invivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07-1553 (2008).
[CrossRef] [PubMed]

Supplementary Material (8)

» Media 1: MOV (1457 KB)     
» Media 2: MOV (1746 KB)     
» Media 3: AVI (11833 KB)     
» Media 4: AVI (14162 KB)     
» Media 5: MOV (490 KB)     
» Media 6: MOV (1414 KB)     
» Media 7: AVI (4126 KB)     
» Media 8: AVI (11070 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) and (b) are the side and top views of the optical setup of the proposed system, respectively. 840-nm SLD: Superluminescent diode light source, 1-μm ASE: Amplified spontaneous emission light source, FC: Fiber coupler, Cir: Circulator, Iso: Isolator, L#: Achromatic Lenses, LP#: Linear polarizers, BS: Pellicle beam splitter reflects 45% and transmits 55%, CP: Confocal pinhole, ST: Stop, Hs: Harmonic separator reflects 1-μm light and transmits 840-nm light. SM#: Gold-protected spherical mirrors, FM#: Gold-protected flat mirrors, WS: SHWS (Haso32), DM: Deformable mirror (Mirao52d), VS: Vertical scanner, 30 Hz, HS: Horizontal scanner, 15 kHz, APD: Si Avalanche photodiode.

Fig. 2.
Fig. 2.

Refractive powers [D] and magnification.

Fig. 3.
Fig. 3.

Strehl ratio calculated over a 2.3 degree field-of-view on the retina.

Fig. 4.
Fig. 4.

Subject A examined (a) without AO correction and (b) with AO correction (Media 1). Subject B examined (c) without AO correction and (d) with AO correction (Media 2). Movies of AO-SLO images show the effect of AO correction, and these high-quality versions are available (Media 3 and Media 4). Field-of-view of these cropped images was 1 degree × 1 degree for the emmetropic eye.

Fig. 5.
Fig. 5.

Wide-field retinal image montage obtained by manual registration of several images. Yellow circles/arc represent the eccentricity contours.

Fig. 6.
Fig. 6.

AO-SLO image with focal shift at retina. (a) Incident beam focused on the photoreceptor layer (Media 5). (b) Incident beam focused on the inner retinal layer (Media 6). Movies of the AO-SLO images show the effect of the additional defocus, and these high-quality version are available (Media 7) and (Media 8)).

Fig. 7.
Fig. 7.

(a) Lateral resolution, (b) maximum peak value of PSF, and (c) normalized intensity of PSF, which is calculated from the double integral of PSF. Horizontal-axis corresponds to the physical diameter of the pinhole in Airy unit [A.U.].

Fig. 8.
Fig. 8.

(a) Residual aberration coefficients and (b) residual RMS wavefront error, which are measured using the SHWS (Haso32). The error bars (green and red) in (a) represent the standard deviation of the residual aberration coefficients of AO-off and AO-on, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Sr exp { ( 2 πδ λ ) 2 }
PSF = PSF ill × ( PSF obs * D )
PSF ill ( X , Y ) = c { I ( x , y ) exp ( 2 πi ( W ( x , y ) + w ill ( x , y ) ) λ ) } 2 PSF obs ( X , Y ) = c { I ( x , y ) exp ( 2 πi ( W ( x , y ) + w obs ( x , y ) ) λ ) } 2

Metrics