Abstract

We present the transformation of electromagnetically induced transparency (EIT) into narrow enhanced absorption with an on-resonant standing-wave coupling field in the 5S1/2-5P1/2 transition of the Λ-type system of 87Rb atoms. When a coupling laser field was changed from a travelling-wave to a standing-wave that was made by adding a counter-propagating LC laser, the transmittance spectrum of the LP laser transformed the typical EIT into dramatically enhanced absorption, and a Bragg reflection signal was generated by the periodic modulation of atomic absorption. The reflected probe laser corresponding to a Bragg reflection was measured to be approximately 11.5% of the power of the incident probe laser. We analyzed the enhanced absorption signal and Bragg reflection spectrum as a function of the power and frequency detuning of the coupling laser.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [CrossRef] [PubMed]
  2. S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46(1), R29–R32 (1992).
    [CrossRef] [PubMed]
  3. D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: A comparison of V, Λ, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
    [CrossRef] [PubMed]
  4. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
    [CrossRef] [PubMed]
  5. Y. Li, S. Jin, and M. Xiao, “Observation of an electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51(3), R1754–1757 (1995).
    [CrossRef] [PubMed]
  6. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
    [CrossRef] [PubMed]
  7. S. A. Hopkins, E. Usadi, H. X. Chen, and A. V. Durrant, “Electromagnetically induced transparency of laser-cooled rubidium atoms in three-level Λ-type systems,” Opt. Commun. 138(1-3), 185–192 (1997).
    [CrossRef]
  8. H. S. Moon, S. E. Park, Y. H. Park, L. Lee, and J. B. Kim, “Passive atomic frequency standard based on coherent population trapping in 87Rb using injection-locked lasers,” J. Opt. Soc. Am. B 23(11), 2393–2397 (2006).
    [CrossRef]
  9. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
    [CrossRef] [PubMed]
  10. D. Budker and M. V. Romalis, “Optical Magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
    [CrossRef]
  11. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [CrossRef]
  12. M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
    [CrossRef] [PubMed]
  13. D. F. Phillips, A. Fleischauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
    [CrossRef] [PubMed]
  14. A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89(14), 143602 (2002).
    [CrossRef] [PubMed]
  15. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
    [CrossRef] [PubMed]
  16. X. M. Su and B. S. Ham, “Dynamic control of the photonic band gap using quantum coherence,” Phys. Rev. A 71(1), 013821 (2005).
    [CrossRef]
  17. H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
    [CrossRef]
  18. M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59(6), 4773–4776 (1999).
    [CrossRef]
  19. I. H. Bae, H. S. Moon, M. K. Kim, L. Lee, and J. B. Kim, “Electromagnetically induced Bragg reflection with a stationary coupling field in a buffer rubidium vapor cell,” Appl. Opt. 47(27), 4849–4855 (2008).
    [CrossRef] [PubMed]
  20. S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
    [CrossRef]
  21. A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30(7), 699–701 (2005).
    [CrossRef] [PubMed]
  22. F. Silva, J. Mompart, V. Ahufinger, and R. Corbalan, “Electromagnetically induced transparency in Doppler-broadened three-level systems with resonant standing-wave drive,” Europhys. Lett. 51(3), 286–292 (2000).
    [CrossRef]
  23. F. Silva, J. Mompart, V. Ahufinger, and R. Corbalan, “Electromagnetically induced transparency with a standing-wave drive in the frequency up-conversion regime,” Phys. Rev. A 64(3), 0033802 (2001).
    [CrossRef]
  24. D. V. Strekalov, A. B. Matsko, and N. Yu, “Electromagnetically induced transparency with a partially standing drive field,” Phys. Rev. A 76(5), 053828 (2007).
    [CrossRef]
  25. B. J. Feldman and M. S. Feld, “Laser-induced line-narrowing effects in coupled Doppler-broadened transition. II. Standing-wave features,” Phys. Rev. A 5(2), 899–918 (1972).
    [CrossRef]

2008

2007

D. V. Strekalov, A. B. Matsko, and N. Yu, “Electromagnetically induced transparency with a partially standing drive field,” Phys. Rev. A 76(5), 053828 (2007).
[CrossRef]

D. Budker and M. V. Romalis, “Optical Magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[CrossRef]

2006

2005

X. M. Su and B. S. Ham, “Dynamic control of the photonic band gap using quantum coherence,” Phys. Rev. A 71(1), 013821 (2005).
[CrossRef]

A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30(7), 699–701 (2005).
[CrossRef] [PubMed]

2003

S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
[CrossRef]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
[CrossRef] [PubMed]

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[CrossRef] [PubMed]

2002

A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89(14), 143602 (2002).
[CrossRef] [PubMed]

2001

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[CrossRef] [PubMed]

F. Silva, J. Mompart, V. Ahufinger, and R. Corbalan, “Electromagnetically induced transparency with a standing-wave drive in the frequency up-conversion regime,” Phys. Rev. A 64(3), 0033802 (2001).
[CrossRef]

2000

F. Silva, J. Mompart, V. Ahufinger, and R. Corbalan, “Electromagnetically induced transparency in Doppler-broadened three-level systems with resonant standing-wave drive,” Europhys. Lett. 51(3), 286–292 (2000).
[CrossRef]

1999

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59(6), 4773–4776 (1999).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

1998

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[CrossRef]

1997

S. A. Hopkins, E. Usadi, H. X. Chen, and A. V. Durrant, “Electromagnetically induced transparency of laser-cooled rubidium atoms in three-level Λ-type systems,” Opt. Commun. 138(1-3), 185–192 (1997).
[CrossRef]

1995

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: A comparison of V, Λ, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

Y. Li, S. Jin, and M. Xiao, “Observation of an electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51(3), R1754–1757 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
[CrossRef] [PubMed]

1992

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46(1), R29–R32 (1992).
[CrossRef] [PubMed]

1991

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

1972

B. J. Feldman and M. S. Feld, “Laser-induced line-narrowing effects in coupled Doppler-broadened transition. II. Standing-wave features,” Phys. Rev. A 5(2), 899–918 (1972).
[CrossRef]

Ahufinger, V.

F. Silva, J. Mompart, V. Ahufinger, and R. Corbalan, “Electromagnetically induced transparency with a standing-wave drive in the frequency up-conversion regime,” Phys. Rev. A 64(3), 0033802 (2001).
[CrossRef]

F. Silva, J. Mompart, V. Ahufinger, and R. Corbalan, “Electromagnetically induced transparency in Doppler-broadened three-level systems with resonant standing-wave drive,” Europhys. Lett. 51(3), 286–292 (2000).
[CrossRef]

André, A.

A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89(14), 143602 (2002).
[CrossRef] [PubMed]

Babin, S. A.

S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
[CrossRef]

Bae, I. H.

Bajcsy, M.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
[CrossRef] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Boca, A.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[CrossRef] [PubMed]

Boller, K. J.

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

Boozer, A. D.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[CrossRef] [PubMed]

Bowen, W. P.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[CrossRef] [PubMed]

Brown, A. W.

Budker, D.

D. Budker and M. V. Romalis, “Optical Magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[CrossRef]

Chen, H. X.

S. A. Hopkins, E. Usadi, H. X. Chen, and A. V. Durrant, “Electromagnetically induced transparency of laser-cooled rubidium atoms in three-level Λ-type systems,” Opt. Commun. 138(1-3), 185–192 (1997).
[CrossRef]

Chou, C. W.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[CrossRef] [PubMed]

Churkin, D. V.

S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
[CrossRef]

Corbalan, R.

F. Silva, J. Mompart, V. Ahufinger, and R. Corbalan, “Electromagnetically induced transparency with a standing-wave drive in the frequency up-conversion regime,” Phys. Rev. A 64(3), 0033802 (2001).
[CrossRef]

F. Silva, J. Mompart, V. Ahufinger, and R. Corbalan, “Electromagnetically induced transparency in Doppler-broadened three-level systems with resonant standing-wave drive,” Europhys. Lett. 51(3), 286–292 (2000).
[CrossRef]

Duan, L.-M.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[CrossRef] [PubMed]

Dunn, M. H.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
[CrossRef] [PubMed]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: A comparison of V, Λ, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
[CrossRef] [PubMed]

Durrant, A. V.

S. A. Hopkins, E. Usadi, H. X. Chen, and A. V. Durrant, “Electromagnetically induced transparency of laser-cooled rubidium atoms in three-level Λ-type systems,” Opt. Commun. 138(1-3), 185–192 (1997).
[CrossRef]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Feld, M. S.

B. J. Feldman and M. S. Feld, “Laser-induced line-narrowing effects in coupled Doppler-broadened transition. II. Standing-wave features,” Phys. Rev. A 5(2), 899–918 (1972).
[CrossRef]

Feldman, B. J.

B. J. Feldman and M. S. Feld, “Laser-induced line-narrowing effects in coupled Doppler-broadened transition. II. Standing-wave features,” Phys. Rev. A 5(2), 899–918 (1972).
[CrossRef]

Field, J. E.

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46(1), R29–R32 (1992).
[CrossRef] [PubMed]

Fleischauer, A.

D. F. Phillips, A. Fleischauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[CrossRef] [PubMed]

Fulton, D. J.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: A comparison of V, Λ, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
[CrossRef] [PubMed]

Gea-Banacloche, J.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

Ham, B. S.

X. M. Su and B. S. Ham, “Dynamic control of the photonic band gap using quantum coherence,” Phys. Rev. A 71(1), 013821 (2005).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46(1), R29–R32 (1992).
[CrossRef] [PubMed]

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Hopkins, S. A.

S. A. Hopkins, E. Usadi, H. X. Chen, and A. V. Durrant, “Electromagnetically induced transparency of laser-cooled rubidium atoms in three-level Λ-type systems,” Opt. Commun. 138(1-3), 185–192 (1997).
[CrossRef]

Imamoglu, A.

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[CrossRef] [PubMed]

Imamolu, A.

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

Imoto, N.

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59(6), 4773–4776 (1999).
[CrossRef]

Jin, S.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

Y. Li, S. Jin, and M. Xiao, “Observation of an electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51(3), R1754–1757 (1995).
[CrossRef] [PubMed]

Kasapi, A.

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46(1), R29–R32 (1992).
[CrossRef] [PubMed]

Kim, J. B.

Kim, M. K.

Kimble, H. J.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[CrossRef] [PubMed]

Kuzmich, A.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[CrossRef] [PubMed]

Lee, L.

Li, Y.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

Y. Li, S. Jin, and M. Xiao, “Observation of an electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51(3), R1754–1757 (1995).
[CrossRef] [PubMed]

Li, Y. Q.

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[CrossRef]

Ling, H. Y.

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[CrossRef]

Lukin, M. D.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
[CrossRef] [PubMed]

A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89(14), 143602 (2002).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[CrossRef] [PubMed]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[CrossRef] [PubMed]

Mair, A.

D. F. Phillips, A. Fleischauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[CrossRef] [PubMed]

Matsko, A. B.

D. V. Strekalov, A. B. Matsko, and N. Yu, “Electromagnetically induced transparency with a partially standing drive field,” Phys. Rev. A 76(5), 053828 (2007).
[CrossRef]

Mitsunaga, M.

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59(6), 4773–4776 (1999).
[CrossRef]

Mompart, J.

F. Silva, J. Mompart, V. Ahufinger, and R. Corbalan, “Electromagnetically induced transparency with a standing-wave drive in the frequency up-conversion regime,” Phys. Rev. A 64(3), 0033802 (2001).
[CrossRef]

F. Silva, J. Mompart, V. Ahufinger, and R. Corbalan, “Electromagnetically induced transparency in Doppler-broadened three-level systems with resonant standing-wave drive,” Europhys. Lett. 51(3), 286–292 (2000).
[CrossRef]

Moon, H. S.

Moseley, R. R.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
[CrossRef] [PubMed]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: A comparison of V, Λ, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
[CrossRef] [PubMed]

Park, S. E.

Park, Y. H.

Phillips, D. F.

D. F. Phillips, A. Fleischauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[CrossRef] [PubMed]

Podivilov, E. V.

S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
[CrossRef]

Potapov, V. V.

S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
[CrossRef]

Romalis, M. V.

D. Budker and M. V. Romalis, “Optical Magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[CrossRef]

Shapiro, D. A.

S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
[CrossRef]

Shepherd, S.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
[CrossRef] [PubMed]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: A comparison of V, Λ, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
[CrossRef] [PubMed]

Silva, F.

F. Silva, J. Mompart, V. Ahufinger, and R. Corbalan, “Electromagnetically induced transparency with a standing-wave drive in the frequency up-conversion regime,” Phys. Rev. A 64(3), 0033802 (2001).
[CrossRef]

F. Silva, J. Mompart, V. Ahufinger, and R. Corbalan, “Electromagnetically induced transparency in Doppler-broadened three-level systems with resonant standing-wave drive,” Europhys. Lett. 51(3), 286–292 (2000).
[CrossRef]

Sinclair, B. D.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: A comparison of V, Λ, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
[CrossRef] [PubMed]

Strekalov, D. V.

D. V. Strekalov, A. B. Matsko, and N. Yu, “Electromagnetically induced transparency with a partially standing drive field,” Phys. Rev. A 76(5), 053828 (2007).
[CrossRef]

Su, X. M.

X. M. Su and B. S. Ham, “Dynamic control of the photonic band gap using quantum coherence,” Phys. Rev. A 71(1), 013821 (2005).
[CrossRef]

Usadi, E.

S. A. Hopkins, E. Usadi, H. X. Chen, and A. V. Durrant, “Electromagnetically induced transparency of laser-cooled rubidium atoms in three-level Λ-type systems,” Opt. Commun. 138(1-3), 185–192 (1997).
[CrossRef]

Walsworth, R. L.

D. F. Phillips, A. Fleischauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[CrossRef] [PubMed]

Xiao, M.

A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30(7), 699–701 (2005).
[CrossRef] [PubMed]

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[CrossRef]

Y. Li, S. Jin, and M. Xiao, “Observation of an electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51(3), R1754–1757 (1995).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

Yu, N.

D. V. Strekalov, A. B. Matsko, and N. Yu, “Electromagnetically induced transparency with a partially standing drive field,” Phys. Rev. A 76(5), 053828 (2007).
[CrossRef]

Zibrov, A. S.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
[CrossRef] [PubMed]

Appl. Opt.

Europhys. Lett.

F. Silva, J. Mompart, V. Ahufinger, and R. Corbalan, “Electromagnetically induced transparency in Doppler-broadened three-level systems with resonant standing-wave drive,” Europhys. Lett. 51(3), 286–292 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Phys.

D. Budker and M. V. Romalis, “Optical Magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[CrossRef]

Nature

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[CrossRef] [PubMed]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
[CrossRef] [PubMed]

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[CrossRef] [PubMed]

Opt. Commun.

S. A. Hopkins, E. Usadi, H. X. Chen, and A. V. Durrant, “Electromagnetically induced transparency of laser-cooled rubidium atoms in three-level Λ-type systems,” Opt. Commun. 138(1-3), 185–192 (1997).
[CrossRef]

Opt. Lett.

Phys. Rev. A

S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
[CrossRef]

F. Silva, J. Mompart, V. Ahufinger, and R. Corbalan, “Electromagnetically induced transparency with a standing-wave drive in the frequency up-conversion regime,” Phys. Rev. A 64(3), 0033802 (2001).
[CrossRef]

D. V. Strekalov, A. B. Matsko, and N. Yu, “Electromagnetically induced transparency with a partially standing drive field,” Phys. Rev. A 76(5), 053828 (2007).
[CrossRef]

B. J. Feldman and M. S. Feld, “Laser-induced line-narrowing effects in coupled Doppler-broadened transition. II. Standing-wave features,” Phys. Rev. A 5(2), 899–918 (1972).
[CrossRef]

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46(1), R29–R32 (1992).
[CrossRef] [PubMed]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: A comparison of V, Λ, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
[CrossRef] [PubMed]

Y. Li, S. Jin, and M. Xiao, “Observation of an electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51(3), R1754–1757 (1995).
[CrossRef] [PubMed]

X. M. Su and B. S. Ham, “Dynamic control of the photonic band gap using quantum coherence,” Phys. Rev. A 71(1), 013821 (2005).
[CrossRef]

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[CrossRef]

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59(6), 4773–4776 (1999).
[CrossRef]

Phys. Rev. Lett.

D. F. Phillips, A. Fleischauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[CrossRef] [PubMed]

A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89(14), 143602 (2002).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schemes of the Λ-type atomic system in the 5S1/2-5P1/2 transition of 87Rb atoms.

Fig. 2
Fig. 2

Experimental setup for the enhanced absorption and Bragg reflection (BS: beam splitter, PD: photo diode, HWP: half-wave plate and FD: fluorescence detector).

Fig. 3
Fig. 3

The typical EIT spectrum with a travelling-wave coupling field and enhanced absorption spectrum with a standing-wave coupling field in the Λ-type system of the 5S1/2-5P1/2 transition of 87Rb atoms; (a) experimental results and (b) calculated results.

Fig. 4
Fig. 4

Three simultaneously measured spectra with the standing-wave coupling field; the enhanced absorption spectrum by measuring the forward transmittance LP signal, the fluorescence spectrum by measuring at the side of the Rb vapor cell, and the Bragg reflection spectrum by measuring the backward reflection LP signal.

Fig. 5
Fig. 5

The measured (a) enhanced absorption and (b) Bragg reflection spectra according to the power of the co-propagating LC laser, where the power of the counter-propagating LC laser was 15 mW and one of the co-propagating LC laser was changed from 1 to 15 mW.

Fig. 6
Fig. 6

The measured (a) enhanced absorption and (b) Bragg reflection spectra according to the power of the counter-propagating LC laser, where the power of the co-propagating LC laser was 15 mW and the power of the counter-propagating LC laser was changed from 50 μW to 15 mW.

Fig. 7
Fig. 7

The measured (a) transmission and (b) reflection spectra as a function of frequency detuning of the coupling laser.

Metrics