Abstract

We report a solution to the long standing problem of the occurrence of spontaneous and long-lived bursts of relaxation oscillations which occur when a continuous-wave optical parametric oscillator is operated within the cavity of the parent pump-laser. By placing a second nonlinear crystal within the pump-wave cavity for the purpose of second-harmonic-generation of the pump-wave the additional nonlinear loss thereby arising due to up-conversion effectively suppresses the relaxation oscillations with very little reduction in down-converted power.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Noncritically phase-matched Ti:sapphire-pumped femtosecond optical parametric oscillator based on RbTiOAsO(4),” Opt. Lett. 20(1), 55–57 (1995).
    [CrossRef] [PubMed]
  2. F. G. Colville, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave, singly resonant, intracavity parametric oscillator,” Opt. Lett. 22(2), 75–77 (1997).
    [CrossRef] [PubMed]
  3. T. J. Edwards, D. Walsh, M. B. Spurr, C. F. Rae, M. H. Dunn, and P. G. Browne, “Compact source of continuously and widely-tunable terahertz radiation,” Opt. Express 14(4), 1582–1589 (2006).
    [CrossRef] [PubMed]
  4. I. D. Lindsay, P. Groß, C. J. Lee, B. Adhimoolam, and K. J. Boller, “Mid-infrared wavelength- and frequency-modulation spectroscopy with a pump-modulated singly-resonant optical parametric oscillator,” Opt. Express 14(25), 12341–12346 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-25-12341 .
    [CrossRef] [PubMed]
  5. I. D. Lindsay, G. A. Turnbull, M. H. Dunn, and M. Ebrahimzadeh, “Doubly resonant continuous-wave optical parametric oscillator pumped by a single-mode diode laser,” Opt. Lett. 23(24), 1889–1891 (1998).
    [CrossRef]
  6. K. Schneider and S. Schiller, ““Narrow-linewidth, pump-enhanced singly-resonant parametric oscillator pumped at 532 nm,” Appl. Phys,” B-Lasers Opt. 65(6), 775–777 (1997).
    [CrossRef]
  7. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21(17), 1336–1338 (1996).
    [CrossRef] [PubMed]
  8. D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, “Low-pump-threshold continuous-wave singly resonant optical parametric oscillator,” Opt. Lett. 23(24), 1895–1897 (1998).
    [CrossRef]
  9. G. A. Turnbull, D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, “Transient Dynamics of CW Intracavity Singly Resonant Optical Parametric Oscillators,” IEEE J. Quantum Electron. 35(11), 1666–1672 (1999).
    [CrossRef]
  10. T. Debuisschert, J. Raffy, J. P. Pocholle, and M. Papuchon, “Intracavity optical parametric oscillator: Study of the dynamics in pulsed regime,” J. Opt. Soc. Am. B 13(7), 1569–1587 (1996).
    [CrossRef]
  11. D. J. M. Stothard, C. F. Rae, and M. H. Dunn, “An Intracavity Optical Parametric Oscillator With Very High Repetition Rate and Broad Tunability Based Upon Room Temperature Periodically Poled MgO LiNbO With Fanned Grating Design,” IEEE J. Quantum Electron. 45(3), 256–263 (2009).
    [CrossRef]
  12. G. A. Turnbull, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave, intracavity optical parametric oscillators: an analysis of power characteristics,” Appl. Phys. B 66(6), 701–710 (1998).
    [CrossRef]
  13. D. J. M. Stothard, J. M. Hopkins, D. Burns, and M. H. Dunn, “Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL),” Opt. Express 17(13), 10648–10658 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-13-10648 .
    [CrossRef] [PubMed]
  14. O. B. Jensen, T. Skettrup, O. B. Petersen, and M. B. Larsen, “Diode-pumped intracavity optical parametric oscillator in pulsed and continuous-wave operation,” J. Opt. A, Pure Appl. Opt. 4(2), 190–193 (2002).
    [CrossRef]

2009 (2)

D. J. M. Stothard, C. F. Rae, and M. H. Dunn, “An Intracavity Optical Parametric Oscillator With Very High Repetition Rate and Broad Tunability Based Upon Room Temperature Periodically Poled MgO LiNbO With Fanned Grating Design,” IEEE J. Quantum Electron. 45(3), 256–263 (2009).
[CrossRef]

D. J. M. Stothard, J. M. Hopkins, D. Burns, and M. H. Dunn, “Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL),” Opt. Express 17(13), 10648–10658 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-13-10648 .
[CrossRef] [PubMed]

2006 (2)

2002 (1)

O. B. Jensen, T. Skettrup, O. B. Petersen, and M. B. Larsen, “Diode-pumped intracavity optical parametric oscillator in pulsed and continuous-wave operation,” J. Opt. A, Pure Appl. Opt. 4(2), 190–193 (2002).
[CrossRef]

1999 (1)

G. A. Turnbull, D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, “Transient Dynamics of CW Intracavity Singly Resonant Optical Parametric Oscillators,” IEEE J. Quantum Electron. 35(11), 1666–1672 (1999).
[CrossRef]

1998 (3)

1997 (2)

K. Schneider and S. Schiller, ““Narrow-linewidth, pump-enhanced singly-resonant parametric oscillator pumped at 532 nm,” Appl. Phys,” B-Lasers Opt. 65(6), 775–777 (1997).
[CrossRef]

F. G. Colville, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave, singly resonant, intracavity parametric oscillator,” Opt. Lett. 22(2), 75–77 (1997).
[CrossRef] [PubMed]

1996 (2)

1995 (1)

Adhimoolam, B.

Alexander, J. I.

Boller, K. J.

Bosenberg, W. R.

Browne, P. G.

Burns, D.

Byer, R. L.

Colville, F. G.

Debuisschert, T.

Drobshoff, A.

Dunn, M. H.

D. J. M. Stothard, C. F. Rae, and M. H. Dunn, “An Intracavity Optical Parametric Oscillator With Very High Repetition Rate and Broad Tunability Based Upon Room Temperature Periodically Poled MgO LiNbO With Fanned Grating Design,” IEEE J. Quantum Electron. 45(3), 256–263 (2009).
[CrossRef]

D. J. M. Stothard, J. M. Hopkins, D. Burns, and M. H. Dunn, “Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL),” Opt. Express 17(13), 10648–10658 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-13-10648 .
[CrossRef] [PubMed]

T. J. Edwards, D. Walsh, M. B. Spurr, C. F. Rae, M. H. Dunn, and P. G. Browne, “Compact source of continuously and widely-tunable terahertz radiation,” Opt. Express 14(4), 1582–1589 (2006).
[CrossRef] [PubMed]

G. A. Turnbull, D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, “Transient Dynamics of CW Intracavity Singly Resonant Optical Parametric Oscillators,” IEEE J. Quantum Electron. 35(11), 1666–1672 (1999).
[CrossRef]

G. A. Turnbull, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave, intracavity optical parametric oscillators: an analysis of power characteristics,” Appl. Phys. B 66(6), 701–710 (1998).
[CrossRef]

I. D. Lindsay, G. A. Turnbull, M. H. Dunn, and M. Ebrahimzadeh, “Doubly resonant continuous-wave optical parametric oscillator pumped by a single-mode diode laser,” Opt. Lett. 23(24), 1889–1891 (1998).
[CrossRef]

D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, “Low-pump-threshold continuous-wave singly resonant optical parametric oscillator,” Opt. Lett. 23(24), 1895–1897 (1998).
[CrossRef]

F. G. Colville, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave, singly resonant, intracavity parametric oscillator,” Opt. Lett. 22(2), 75–77 (1997).
[CrossRef] [PubMed]

Ebrahimzadeh, M.

Edwards, T. J.

Groß, P.

Hopkins, J. M.

Jensen, O. B.

O. B. Jensen, T. Skettrup, O. B. Petersen, and M. B. Larsen, “Diode-pumped intracavity optical parametric oscillator in pulsed and continuous-wave operation,” J. Opt. A, Pure Appl. Opt. 4(2), 190–193 (2002).
[CrossRef]

Larsen, M. B.

O. B. Jensen, T. Skettrup, O. B. Petersen, and M. B. Larsen, “Diode-pumped intracavity optical parametric oscillator in pulsed and continuous-wave operation,” J. Opt. A, Pure Appl. Opt. 4(2), 190–193 (2002).
[CrossRef]

Lee, C. J.

Lindsay, I. D.

Myers, L. E.

Papuchon, M.

Petersen, O. B.

O. B. Jensen, T. Skettrup, O. B. Petersen, and M. B. Larsen, “Diode-pumped intracavity optical parametric oscillator in pulsed and continuous-wave operation,” J. Opt. A, Pure Appl. Opt. 4(2), 190–193 (2002).
[CrossRef]

Pocholle, J. P.

Rae, C. F.

D. J. M. Stothard, C. F. Rae, and M. H. Dunn, “An Intracavity Optical Parametric Oscillator With Very High Repetition Rate and Broad Tunability Based Upon Room Temperature Periodically Poled MgO LiNbO With Fanned Grating Design,” IEEE J. Quantum Electron. 45(3), 256–263 (2009).
[CrossRef]

T. J. Edwards, D. Walsh, M. B. Spurr, C. F. Rae, M. H. Dunn, and P. G. Browne, “Compact source of continuously and widely-tunable terahertz radiation,” Opt. Express 14(4), 1582–1589 (2006).
[CrossRef] [PubMed]

Raffy, J.

Reid, D. T.

Schiller, S.

K. Schneider and S. Schiller, ““Narrow-linewidth, pump-enhanced singly-resonant parametric oscillator pumped at 532 nm,” Appl. Phys,” B-Lasers Opt. 65(6), 775–777 (1997).
[CrossRef]

Schneider, K.

K. Schneider and S. Schiller, ““Narrow-linewidth, pump-enhanced singly-resonant parametric oscillator pumped at 532 nm,” Appl. Phys,” B-Lasers Opt. 65(6), 775–777 (1997).
[CrossRef]

Sibbett, W.

Skettrup, T.

O. B. Jensen, T. Skettrup, O. B. Petersen, and M. B. Larsen, “Diode-pumped intracavity optical parametric oscillator in pulsed and continuous-wave operation,” J. Opt. A, Pure Appl. Opt. 4(2), 190–193 (2002).
[CrossRef]

Spurr, M. B.

Stothard, D. J. M.

D. J. M. Stothard, J. M. Hopkins, D. Burns, and M. H. Dunn, “Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL),” Opt. Express 17(13), 10648–10658 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-13-10648 .
[CrossRef] [PubMed]

D. J. M. Stothard, C. F. Rae, and M. H. Dunn, “An Intracavity Optical Parametric Oscillator With Very High Repetition Rate and Broad Tunability Based Upon Room Temperature Periodically Poled MgO LiNbO With Fanned Grating Design,” IEEE J. Quantum Electron. 45(3), 256–263 (2009).
[CrossRef]

G. A. Turnbull, D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, “Transient Dynamics of CW Intracavity Singly Resonant Optical Parametric Oscillators,” IEEE J. Quantum Electron. 35(11), 1666–1672 (1999).
[CrossRef]

D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, “Low-pump-threshold continuous-wave singly resonant optical parametric oscillator,” Opt. Lett. 23(24), 1895–1897 (1998).
[CrossRef]

Turnbull, G. A.

G. A. Turnbull, D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, “Transient Dynamics of CW Intracavity Singly Resonant Optical Parametric Oscillators,” IEEE J. Quantum Electron. 35(11), 1666–1672 (1999).
[CrossRef]

I. D. Lindsay, G. A. Turnbull, M. H. Dunn, and M. Ebrahimzadeh, “Doubly resonant continuous-wave optical parametric oscillator pumped by a single-mode diode laser,” Opt. Lett. 23(24), 1889–1891 (1998).
[CrossRef]

G. A. Turnbull, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave, intracavity optical parametric oscillators: an analysis of power characteristics,” Appl. Phys. B 66(6), 701–710 (1998).
[CrossRef]

Walsh, D.

Appl. Phys. B (1)

G. A. Turnbull, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave, intracavity optical parametric oscillators: an analysis of power characteristics,” Appl. Phys. B 66(6), 701–710 (1998).
[CrossRef]

B-Lasers Opt. (1)

K. Schneider and S. Schiller, ““Narrow-linewidth, pump-enhanced singly-resonant parametric oscillator pumped at 532 nm,” Appl. Phys,” B-Lasers Opt. 65(6), 775–777 (1997).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. A. Turnbull, D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, “Transient Dynamics of CW Intracavity Singly Resonant Optical Parametric Oscillators,” IEEE J. Quantum Electron. 35(11), 1666–1672 (1999).
[CrossRef]

D. J. M. Stothard, C. F. Rae, and M. H. Dunn, “An Intracavity Optical Parametric Oscillator With Very High Repetition Rate and Broad Tunability Based Upon Room Temperature Periodically Poled MgO LiNbO With Fanned Grating Design,” IEEE J. Quantum Electron. 45(3), 256–263 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

O. B. Jensen, T. Skettrup, O. B. Petersen, and M. B. Larsen, “Diode-pumped intracavity optical parametric oscillator in pulsed and continuous-wave operation,” J. Opt. A, Pure Appl. Opt. 4(2), 190–193 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (5)

Supplementary Material (2)

» Media 1: MOV (690 KB)     
» Media 2: MOV (3663 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(1.9MB) (Media 1) showing the typical free-running stability of an Nd-based ICOPO. The oscillations occurring in this clip occur spontaneously: no external triggering mechanism was employed.

Fig. 2
Fig. 2

Transient behaviour of the circulating pump field (Pp) as predicted by the theoretical modeling after perturbation for (a) the pump laser alone, (b) the ICOPO with no SHG suppression (i.e. δ = 0) and (c) the ICOPO with SHG suppression enabled (δ = 0.01). Note that, due to their high frequency, individual oscillations in Figs. 2(b) and (c) are not resolvable. Stated times along the horizontal axis are normalized to the upper state lifetime (in this case 100μs)

Fig. 3
Fig. 3

Experimental configuration of the ICOPO with SHG relaxation oscillation suppression.

Fig. 4
Fig. 4

Experimental measurements of the transient behavior of the ICOPO with (a) down-conversion suppressed (i.e. laser operation only), (b) down-conversion permitted (with no SHG) and (c) both down-conversion and SHG enabled.

Fig. 5
Fig. 5

(1.9MB) (Media 2) showing the impact of SHG on the stability of the ICOPO

Fig. 6
Fig. 6

Amplitude spectrum of ICOPO in (a) the absence and (b) the presence of second-harmonic generation.

Fig. 7
Fig. 7

SHG impact upon down-converted power.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n j = 1 τ u × [ 1 + k n j k P p n j ]
P p = P p τ p × [ n j σ j ( 1 + k ) 1 σ j 1 k P s ( 1 + k ) δ . P p ]
P s = P s τ s P p 1
exp ( α . t ) ,
( α τ p ) 3 + [ ( 1 + k ) η + δ ] ( α τ p ) 2 + [ σ j . k . γ + η . ( σ j 1 k ) ( 1 + k ) . η . γ + [ γ . ( 1 + k ) η ] . δ η . γ ] ( α τ p ) + ( σ j 1 k ) ( k + 1 ) . δ η . γ = 0
1 ( 1 + k ) . δ ( σ j 1 k ) ,

Metrics