Abstract

We report a quantum dot sensitized solar cell (QDSSC) with a thioglycolic acid (TGA) capped CdSe quantum dot (QD) sensitized ZnO nanorod photoanode. As revealed by UV-Vis absorption spectrum and transmission electron microscopy, the quantum dots can be effectively adsorbed onto ZnO nanorods. By studying the emission decay, the quenching of the CdSe QDs by ZnO nanorod was verified, and an electron transfer (from QD to ZnO) rate constant of 1 x 108 s−1 was obtained. The efficiency of the as-prepared QDSSC was 0.66% and an incident power conversion efficiency of 22% at 400 nm was achieved.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Klingshirn, “The luminescence of ZnO under high one- and two-quantum excitation,” Phys. Status Solidi B. 71(2), 547–556 (1975).
    [CrossRef]
  2. C. X. Xu, X. W. Sun, S. N. Fang, X. H. Yang, M. B. Yu, G. P. Zhu, and Y. P. Cui, “Electrochemically deposited zinc oxide arrays for field emission,” Appl. Phys. Lett. 88(16), 161921 (2006).
    [CrossRef]
  3. Y. Yang, X. W. Sun, B. K. Tay, G. F. You, S. T. Tan, and K. L. Teo, “A p-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation,” Appl. Phys. Lett. 93(25), 253107 (2008).
    [CrossRef]
  4. J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, and Z. L. Dong, “Zinc oxide nanocomb biosensor for glucose detection,” Appl. Phys. Lett. 88(23), 233106 (2006).
    [CrossRef]
  5. X. W. Sun and J. X. Wang, “Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode,” Nano Lett. 8(7), 1884–1889 (2008).
    [CrossRef] [PubMed]
  6. C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, “Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode,” Appl. Phys. Lett. 90(26), 263501 (2007).
    [CrossRef]
  7. J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang, and R. S. Liu, “An oleic acid-capped CdSe quantum-dot sensitized solar cell,” Appl. Phys. Lett. 94(15), 153115 (2009).
    [CrossRef]
  8. K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
    [CrossRef] [PubMed]
  9. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
    [CrossRef] [PubMed]
  10. Y. Zhang, T. F. Xie, T. F. Jiang, X. Wei, S. Pang, X. Wang, and D. Wang, “Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices,” Nanotechnology 20(15), 155707 (2009).
    [CrossRef] [PubMed]
  11. B. Carlson, K. Leschkies, E. S. Aydil, and X. Y. Zhu, “Valence band alignment at cadmium selenide quantum dot and zinc oxide (10(1)over-bar0) interfaces,” J. Phys. Chem. C 112(22), 8419–8423 (2008).
    [CrossRef]
  12. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture,” J. Am. Chem. Soc. 130(12), 4007–4015 (2008).
    [CrossRef] [PubMed]
  13. D. R. James, Y. S. Liu, P. Demayo, and W. R. Ware, “DISTRIBUTIONS OF FLUORESCENCE LIFETIMES - CONSEQUENCES FOR THE PHOTOPHYSICS OF MOLECULES ADSORBED ON SURFACES,” Chem. Phys. Lett. 120(4–5), 460–465 (1985).
    [CrossRef]
  14. I. Robel, M. Kuno, and P. V. Kamat, “Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles,” J. Am. Chem. Soc. 129(14), 4136- + (2007).
  15. S. Pang, T. F. Xie, Y. Zhang, X. Wei, M. Yang, D. J. Wang, and Z. Du, “Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells,” J. Phys. Chem. C 111(49), 18417–18422 (2007).
    [CrossRef]

2009 (2)

J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang, and R. S. Liu, “An oleic acid-capped CdSe quantum-dot sensitized solar cell,” Appl. Phys. Lett. 94(15), 153115 (2009).
[CrossRef]

Y. Zhang, T. F. Xie, T. F. Jiang, X. Wei, S. Pang, X. Wang, and D. Wang, “Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices,” Nanotechnology 20(15), 155707 (2009).
[CrossRef] [PubMed]

2008 (5)

B. Carlson, K. Leschkies, E. S. Aydil, and X. Y. Zhu, “Valence band alignment at cadmium selenide quantum dot and zinc oxide (10(1)over-bar0) interfaces,” J. Phys. Chem. C 112(22), 8419–8423 (2008).
[CrossRef]

A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture,” J. Am. Chem. Soc. 130(12), 4007–4015 (2008).
[CrossRef] [PubMed]

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

X. W. Sun and J. X. Wang, “Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode,” Nano Lett. 8(7), 1884–1889 (2008).
[CrossRef] [PubMed]

Y. Yang, X. W. Sun, B. K. Tay, G. F. You, S. T. Tan, and K. L. Teo, “A p-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation,” Appl. Phys. Lett. 93(25), 253107 (2008).
[CrossRef]

2007 (3)

C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, “Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode,” Appl. Phys. Lett. 90(26), 263501 (2007).
[CrossRef]

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

S. Pang, T. F. Xie, Y. Zhang, X. Wei, M. Yang, D. J. Wang, and Z. Du, “Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells,” J. Phys. Chem. C 111(49), 18417–18422 (2007).
[CrossRef]

2006 (2)

J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, and Z. L. Dong, “Zinc oxide nanocomb biosensor for glucose detection,” Appl. Phys. Lett. 88(23), 233106 (2006).
[CrossRef]

C. X. Xu, X. W. Sun, S. N. Fang, X. H. Yang, M. B. Yu, G. P. Zhu, and Y. P. Cui, “Electrochemically deposited zinc oxide arrays for field emission,” Appl. Phys. Lett. 88(16), 161921 (2006).
[CrossRef]

1985 (1)

D. R. James, Y. S. Liu, P. Demayo, and W. R. Ware, “DISTRIBUTIONS OF FLUORESCENCE LIFETIMES - CONSEQUENCES FOR THE PHOTOPHYSICS OF MOLECULES ADSORBED ON SURFACES,” Chem. Phys. Lett. 120(4–5), 460–465 (1985).
[CrossRef]

1975 (1)

C. Klingshirn, “The luminescence of ZnO under high one- and two-quantum excitation,” Phys. Status Solidi B. 71(2), 547–556 (1975).
[CrossRef]

Aydil, E. S.

B. Carlson, K. Leschkies, E. S. Aydil, and X. Y. Zhu, “Valence band alignment at cadmium selenide quantum dot and zinc oxide (10(1)over-bar0) interfaces,” J. Phys. Chem. C 112(22), 8419–8423 (2008).
[CrossRef]

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

Basu, J.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

Boercker, J. E.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

Cai, X. P.

J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, and Z. L. Dong, “Zinc oxide nanocomb biosensor for glucose detection,” Appl. Phys. Lett. 88(23), 233106 (2006).
[CrossRef]

Carlson, B.

B. Carlson, K. Leschkies, E. S. Aydil, and X. Y. Zhu, “Valence band alignment at cadmium selenide quantum dot and zinc oxide (10(1)over-bar0) interfaces,” J. Phys. Chem. C 112(22), 8419–8423 (2008).
[CrossRef]

Carter, C. B.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

Chen, J.

J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang, and R. S. Liu, “An oleic acid-capped CdSe quantum-dot sensitized solar cell,” Appl. Phys. Lett. 94(15), 153115 (2009).
[CrossRef]

Cui, Y. P.

C. X. Xu, X. W. Sun, S. N. Fang, X. H. Yang, M. B. Yu, G. P. Zhu, and Y. P. Cui, “Electrochemically deposited zinc oxide arrays for field emission,” Appl. Phys. Lett. 88(16), 161921 (2006).
[CrossRef]

Demayo, P.

D. R. James, Y. S. Liu, P. Demayo, and W. R. Ware, “DISTRIBUTIONS OF FLUORESCENCE LIFETIMES - CONSEQUENCES FOR THE PHOTOPHYSICS OF MOLECULES ADSORBED ON SURFACES,” Chem. Phys. Lett. 120(4–5), 460–465 (1985).
[CrossRef]

Deng, W. Q.

J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang, and R. S. Liu, “An oleic acid-capped CdSe quantum-dot sensitized solar cell,” Appl. Phys. Lett. 94(15), 153115 (2009).
[CrossRef]

Divakar, R.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

Dong, Z. L.

J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, and Z. L. Dong, “Zinc oxide nanocomb biosensor for glucose detection,” Appl. Phys. Lett. 88(23), 233106 (2006).
[CrossRef]

Du, Z.

S. Pang, T. F. Xie, Y. Zhang, X. Wei, M. Yang, D. J. Wang, and Z. Du, “Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells,” J. Phys. Chem. C 111(49), 18417–18422 (2007).
[CrossRef]

Enache-Pommer, E.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

Fang, S. N.

C. X. Xu, X. W. Sun, S. N. Fang, X. H. Yang, M. B. Yu, G. P. Zhu, and Y. P. Cui, “Electrochemically deposited zinc oxide arrays for field emission,” Appl. Phys. Lett. 88(16), 161921 (2006).
[CrossRef]

Hsu, J. W. P.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Huang, J. H.

J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang, and R. S. Liu, “An oleic acid-capped CdSe quantum-dot sensitized solar cell,” Appl. Phys. Lett. 94(15), 153115 (2009).
[CrossRef]

James, D. R.

D. R. James, Y. S. Liu, P. Demayo, and W. R. Ware, “DISTRIBUTIONS OF FLUORESCENCE LIFETIMES - CONSEQUENCES FOR THE PHOTOPHYSICS OF MOLECULES ADSORBED ON SURFACES,” Chem. Phys. Lett. 120(4–5), 460–465 (1985).
[CrossRef]

Jiang, C. Y.

J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang, and R. S. Liu, “An oleic acid-capped CdSe quantum-dot sensitized solar cell,” Appl. Phys. Lett. 94(15), 153115 (2009).
[CrossRef]

C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, “Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode,” Appl. Phys. Lett. 90(26), 263501 (2007).
[CrossRef]

Jiang, T. F.

Y. Zhang, T. F. Xie, T. F. Jiang, X. Wei, S. Pang, X. Wang, and D. Wang, “Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices,” Nanotechnology 20(15), 155707 (2009).
[CrossRef] [PubMed]

Kamat, P. V.

A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture,” J. Am. Chem. Soc. 130(12), 4007–4015 (2008).
[CrossRef] [PubMed]

Klingshirn, C.

C. Klingshirn, “The luminescence of ZnO under high one- and two-quantum excitation,” Phys. Status Solidi B. 71(2), 547–556 (1975).
[CrossRef]

Kongkanand, A.

A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture,” J. Am. Chem. Soc. 130(12), 4007–4015 (2008).
[CrossRef] [PubMed]

Kortshagen, U. R.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

Kuno, M.

A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture,” J. Am. Chem. Soc. 130(12), 4007–4015 (2008).
[CrossRef] [PubMed]

Kwong, D. L.

C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, “Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode,” Appl. Phys. Lett. 90(26), 263501 (2007).
[CrossRef]

Lee, Y. J.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Lei, W.

J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang, and R. S. Liu, “An oleic acid-capped CdSe quantum-dot sensitized solar cell,” Appl. Phys. Lett. 94(15), 153115 (2009).
[CrossRef]

Lei, Y.

J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, and Z. L. Dong, “Zinc oxide nanocomb biosensor for glucose detection,” Appl. Phys. Lett. 88(23), 233106 (2006).
[CrossRef]

Leschkies, K.

B. Carlson, K. Leschkies, E. S. Aydil, and X. Y. Zhu, “Valence band alignment at cadmium selenide quantum dot and zinc oxide (10(1)over-bar0) interfaces,” J. Phys. Chem. C 112(22), 8419–8423 (2008).
[CrossRef]

Leschkies, K. S.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

Li, C. M.

J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, and Z. L. Dong, “Zinc oxide nanocomb biosensor for glucose detection,” Appl. Phys. Lett. 88(23), 233106 (2006).
[CrossRef]

Liu, R. S.

J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang, and R. S. Liu, “An oleic acid-capped CdSe quantum-dot sensitized solar cell,” Appl. Phys. Lett. 94(15), 153115 (2009).
[CrossRef]

Liu, Y. S.

D. R. James, Y. S. Liu, P. Demayo, and W. R. Ware, “DISTRIBUTIONS OF FLUORESCENCE LIFETIMES - CONSEQUENCES FOR THE PHOTOPHYSICS OF MOLECULES ADSORBED ON SURFACES,” Chem. Phys. Lett. 120(4–5), 460–465 (1985).
[CrossRef]

Lo, G. Q.

C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, “Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode,” Appl. Phys. Lett. 90(26), 263501 (2007).
[CrossRef]

McKenzie, B. B.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Norris, D. J.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

Pang, S.

Y. Zhang, T. F. Xie, T. F. Jiang, X. Wei, S. Pang, X. Wang, and D. Wang, “Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices,” Nanotechnology 20(15), 155707 (2009).
[CrossRef] [PubMed]

S. Pang, T. F. Xie, Y. Zhang, X. Wei, M. Yang, D. J. Wang, and Z. Du, “Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells,” J. Phys. Chem. C 111(49), 18417–18422 (2007).
[CrossRef]

Peters, D. W.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Ruby, D. S.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Song, J. L.

J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang, and R. S. Liu, “An oleic acid-capped CdSe quantum-dot sensitized solar cell,” Appl. Phys. Lett. 94(15), 153115 (2009).
[CrossRef]

Sun, X. W.

J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang, and R. S. Liu, “An oleic acid-capped CdSe quantum-dot sensitized solar cell,” Appl. Phys. Lett. 94(15), 153115 (2009).
[CrossRef]

Y. Yang, X. W. Sun, B. K. Tay, G. F. You, S. T. Tan, and K. L. Teo, “A p-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation,” Appl. Phys. Lett. 93(25), 253107 (2008).
[CrossRef]

X. W. Sun and J. X. Wang, “Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode,” Nano Lett. 8(7), 1884–1889 (2008).
[CrossRef] [PubMed]

C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, “Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode,” Appl. Phys. Lett. 90(26), 263501 (2007).
[CrossRef]

C. X. Xu, X. W. Sun, S. N. Fang, X. H. Yang, M. B. Yu, G. P. Zhu, and Y. P. Cui, “Electrochemically deposited zinc oxide arrays for field emission,” Appl. Phys. Lett. 88(16), 161921 (2006).
[CrossRef]

J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, and Z. L. Dong, “Zinc oxide nanocomb biosensor for glucose detection,” Appl. Phys. Lett. 88(23), 233106 (2006).
[CrossRef]

Takechi, K.

A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture,” J. Am. Chem. Soc. 130(12), 4007–4015 (2008).
[CrossRef] [PubMed]

Tan, S. T.

Y. Yang, X. W. Sun, B. K. Tay, G. F. You, S. T. Tan, and K. L. Teo, “A p-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation,” Appl. Phys. Lett. 93(25), 253107 (2008).
[CrossRef]

Tay, B. K.

Y. Yang, X. W. Sun, B. K. Tay, G. F. You, S. T. Tan, and K. L. Teo, “A p-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation,” Appl. Phys. Lett. 93(25), 253107 (2008).
[CrossRef]

Teo, K. L.

Y. Yang, X. W. Sun, B. K. Tay, G. F. You, S. T. Tan, and K. L. Teo, “A p-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation,” Appl. Phys. Lett. 93(25), 253107 (2008).
[CrossRef]

Tvrdy, K.

A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture,” J. Am. Chem. Soc. 130(12), 4007–4015 (2008).
[CrossRef] [PubMed]

Wang, D.

Y. Zhang, T. F. Xie, T. F. Jiang, X. Wei, S. Pang, X. Wang, and D. Wang, “Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices,” Nanotechnology 20(15), 155707 (2009).
[CrossRef] [PubMed]

Wang, D. J.

S. Pang, T. F. Xie, Y. Zhang, X. Wei, M. Yang, D. J. Wang, and Z. Du, “Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells,” J. Phys. Chem. C 111(49), 18417–18422 (2007).
[CrossRef]

Wang, J. X.

X. W. Sun and J. X. Wang, “Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode,” Nano Lett. 8(7), 1884–1889 (2008).
[CrossRef] [PubMed]

C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, “Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode,” Appl. Phys. Lett. 90(26), 263501 (2007).
[CrossRef]

J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, and Z. L. Dong, “Zinc oxide nanocomb biosensor for glucose detection,” Appl. Phys. Lett. 88(23), 233106 (2006).
[CrossRef]

Wang, X.

Y. Zhang, T. F. Xie, T. F. Jiang, X. Wei, S. Pang, X. Wang, and D. Wang, “Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices,” Nanotechnology 20(15), 155707 (2009).
[CrossRef] [PubMed]

Ware, W. R.

D. R. James, Y. S. Liu, P. Demayo, and W. R. Ware, “DISTRIBUTIONS OF FLUORESCENCE LIFETIMES - CONSEQUENCES FOR THE PHOTOPHYSICS OF MOLECULES ADSORBED ON SURFACES,” Chem. Phys. Lett. 120(4–5), 460–465 (1985).
[CrossRef]

Wei, A.

J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, and Z. L. Dong, “Zinc oxide nanocomb biosensor for glucose detection,” Appl. Phys. Lett. 88(23), 233106 (2006).
[CrossRef]

Wei, X.

Y. Zhang, T. F. Xie, T. F. Jiang, X. Wei, S. Pang, X. Wang, and D. Wang, “Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices,” Nanotechnology 20(15), 155707 (2009).
[CrossRef] [PubMed]

S. Pang, T. F. Xie, Y. Zhang, X. Wei, M. Yang, D. J. Wang, and Z. Du, “Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells,” J. Phys. Chem. C 111(49), 18417–18422 (2007).
[CrossRef]

Xie, T. F.

Y. Zhang, T. F. Xie, T. F. Jiang, X. Wei, S. Pang, X. Wang, and D. Wang, “Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices,” Nanotechnology 20(15), 155707 (2009).
[CrossRef] [PubMed]

S. Pang, T. F. Xie, Y. Zhang, X. Wei, M. Yang, D. J. Wang, and Z. Du, “Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells,” J. Phys. Chem. C 111(49), 18417–18422 (2007).
[CrossRef]

Xu, C. X.

C. X. Xu, X. W. Sun, S. N. Fang, X. H. Yang, M. B. Yu, G. P. Zhu, and Y. P. Cui, “Electrochemically deposited zinc oxide arrays for field emission,” Appl. Phys. Lett. 88(16), 161921 (2006).
[CrossRef]

Yang, M.

S. Pang, T. F. Xie, Y. Zhang, X. Wei, M. Yang, D. J. Wang, and Z. Du, “Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells,” J. Phys. Chem. C 111(49), 18417–18422 (2007).
[CrossRef]

Yang, X. H.

C. X. Xu, X. W. Sun, S. N. Fang, X. H. Yang, M. B. Yu, G. P. Zhu, and Y. P. Cui, “Electrochemically deposited zinc oxide arrays for field emission,” Appl. Phys. Lett. 88(16), 161921 (2006).
[CrossRef]

Yang, Y.

Y. Yang, X. W. Sun, B. K. Tay, G. F. You, S. T. Tan, and K. L. Teo, “A p-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation,” Appl. Phys. Lett. 93(25), 253107 (2008).
[CrossRef]

You, G. F.

Y. Yang, X. W. Sun, B. K. Tay, G. F. You, S. T. Tan, and K. L. Teo, “A p-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation,” Appl. Phys. Lett. 93(25), 253107 (2008).
[CrossRef]

Yu, M. B.

C. X. Xu, X. W. Sun, S. N. Fang, X. H. Yang, M. B. Yu, G. P. Zhu, and Y. P. Cui, “Electrochemically deposited zinc oxide arrays for field emission,” Appl. Phys. Lett. 88(16), 161921 (2006).
[CrossRef]

Zhang, Y.

Y. Zhang, T. F. Xie, T. F. Jiang, X. Wei, S. Pang, X. Wang, and D. Wang, “Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices,” Nanotechnology 20(15), 155707 (2009).
[CrossRef] [PubMed]

S. Pang, T. F. Xie, Y. Zhang, X. Wei, M. Yang, D. J. Wang, and Z. Du, “Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells,” J. Phys. Chem. C 111(49), 18417–18422 (2007).
[CrossRef]

Zhu, G. P.

C. X. Xu, X. W. Sun, S. N. Fang, X. H. Yang, M. B. Yu, G. P. Zhu, and Y. P. Cui, “Electrochemically deposited zinc oxide arrays for field emission,” Appl. Phys. Lett. 88(16), 161921 (2006).
[CrossRef]

Zhu, X. Y.

B. Carlson, K. Leschkies, E. S. Aydil, and X. Y. Zhu, “Valence band alignment at cadmium selenide quantum dot and zinc oxide (10(1)over-bar0) interfaces,” J. Phys. Chem. C 112(22), 8419–8423 (2008).
[CrossRef]

Appl. Phys. Lett. (5)

C. X. Xu, X. W. Sun, S. N. Fang, X. H. Yang, M. B. Yu, G. P. Zhu, and Y. P. Cui, “Electrochemically deposited zinc oxide arrays for field emission,” Appl. Phys. Lett. 88(16), 161921 (2006).
[CrossRef]

Y. Yang, X. W. Sun, B. K. Tay, G. F. You, S. T. Tan, and K. L. Teo, “A p-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation,” Appl. Phys. Lett. 93(25), 253107 (2008).
[CrossRef]

J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, and Z. L. Dong, “Zinc oxide nanocomb biosensor for glucose detection,” Appl. Phys. Lett. 88(23), 233106 (2006).
[CrossRef]

C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, “Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode,” Appl. Phys. Lett. 90(26), 263501 (2007).
[CrossRef]

J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang, and R. S. Liu, “An oleic acid-capped CdSe quantum-dot sensitized solar cell,” Appl. Phys. Lett. 94(15), 153115 (2009).
[CrossRef]

Chem. Phys. Lett. (1)

D. R. James, Y. S. Liu, P. Demayo, and W. R. Ware, “DISTRIBUTIONS OF FLUORESCENCE LIFETIMES - CONSEQUENCES FOR THE PHOTOPHYSICS OF MOLECULES ADSORBED ON SURFACES,” Chem. Phys. Lett. 120(4–5), 460–465 (1985).
[CrossRef]

J. Am. Chem. Soc. (1)

A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture,” J. Am. Chem. Soc. 130(12), 4007–4015 (2008).
[CrossRef] [PubMed]

J. Phys. Chem. C (2)

S. Pang, T. F. Xie, Y. Zhang, X. Wei, M. Yang, D. J. Wang, and Z. Du, “Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells,” J. Phys. Chem. C 111(49), 18417–18422 (2007).
[CrossRef]

B. Carlson, K. Leschkies, E. S. Aydil, and X. Y. Zhu, “Valence band alignment at cadmium selenide quantum dot and zinc oxide (10(1)over-bar0) interfaces,” J. Phys. Chem. C 112(22), 8419–8423 (2008).
[CrossRef]

Nano Lett. (3)

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[CrossRef] [PubMed]

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

X. W. Sun and J. X. Wang, “Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode,” Nano Lett. 8(7), 1884–1889 (2008).
[CrossRef] [PubMed]

Nanotechnology (1)

Y. Zhang, T. F. Xie, T. F. Jiang, X. Wei, S. Pang, X. Wang, and D. Wang, “Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices,” Nanotechnology 20(15), 155707 (2009).
[CrossRef] [PubMed]

Phys. Status Solidi B. (1)

C. Klingshirn, “The luminescence of ZnO under high one- and two-quantum excitation,” Phys. Status Solidi B. 71(2), 547–556 (1975).
[CrossRef]

Other (1)

I. Robel, M. Kuno, and P. V. Kamat, “Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles,” J. Am. Chem. Soc. 129(14), 4136- + (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) The absorption spectra of OA-, TGA- and MPA-capped CdSe QDs in solution (b) The absorption spectrum of ZnO nanorods before and after sensitization with 3.2 nm TGA- and MPA-capped CdSe QDs.

Fig. 2
Fig. 2

(a) SEM image of ZnO nanorods before sensitization with TGA- capped CdSe QDs. (b) SEM image of ZnO nanorods after sensitization with TGA- capped CdSe QDs. (c) TEM image of TGA- capped CdSe QDs. (d) TEM image of ZnO nanorods after sensitization with TGA- capped CdSe QDs.

Fig. 3
Fig. 3

(a) I-V characteristics of Sample A and B measured under simulated solar illumination (A.M 1.5G) with an intensity of 100 mW/cm2. (b) IPCE spectra for Sample A and B.

Fig. 4
Fig. 4

Emission decay: (a) TGA-capped CdSe with and without ZnO nanorod. (b) MPA-capped CdSe with and without ZnO nanorod.

Tables (1)

Tables Icon

Table 1 Kinetic parameters of the CdSe emission decay analysis.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

< τ > = ( α 1 τ 1 2 + α 2 τ 2 2 + α 3 τ 3 2 ) / ( α 1 τ 1 + α 2 τ 2 + α 3 τ 3 )

Metrics